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ABSTRACT:  We describe an approach for dynamically generating asymmetric tactics that can 
drive adversary behaviors in synthetic training environments.  GAMBIT (Genetically Actualized 
Models of Behavior for Insurgent Tactics) features a genetic algorithm and tactic evaluation engine 
that - provided a computational specification of a domain and notional representation of the trainee’s 
tactics - will automatically generate a tactic that will be effective given those inputs.  That tactic can 
then be executed using embedded behavior models within a virtual or constructive simulation.  
GAMBIT-generated tactics can evolve across training exercises by modifying the representation of 
the trainee’s tactics in response to his observed behavior.   
 

1. Introduction 

The use of asymmetric strategy and tactics has 
proven to be an effective threat against U.S.-led 
forces in the Middle East.  While U.S. forces have a 
significant military advantage over the insurgent 
adversaries in terms of conventional military force, 
these adversaries are nonetheless able to further 
their goals through a variety of means. The 
adversary strategies and tactics are asymmetric 
because they do not attempt to counter U.S. 
strengths with equivalent strengths; instead they 
attack areas where it is hard for the U.S. to apply its 
strength. As U.S. forces adapt to eliminate the areas 
where they are vulnerable to attack, the insurgent 
forces change their tactics to find and exploit other 
vulnerable areas. This adaptation is a significant 
change from adversaries that are assumed to follow 
a fixed doctrine. 

The evolving nature of the threat poses a challenge 
to standard training practices. Training programs, 
especially those based on computer simulation 
scenarios, use a fixed seet of threat tactics. How can 
any fixed training program train Soldiers to counter 
an evolving threat? The answer is that expert 
humans play the role of asymmetric adversaries in 
training exercises. The human simulation operators 
can not only employ known, effective adversary 
tactics, but can creatively improvise new tactics and 
adapt to exploit the trainee’s weaknesses.  

The problem with using human role players in 
training systems is that creative, expert players are 
not always available. This is particularly true for 
deployed training systems.  What is needed is a 
way to make computer generated forces in 
simulations adapt to trainee tactics—providing not 
only a varied opposing force, but an adversary that 
exploits weaknesses in trainee tactics. To explore 
how to meet this need, Soar Technology developed 
GAMBIT–Genetically Actualized Models of 
Behavior for Insurgent Tactics.  The GAMBIT 
system features a genetic algorithm (GA)-based 
tactics generator, capable of searching a complex 
space of possible actions for novel, effective tactics 
for adversaries to employ against the trainee. The 
vision is to generate these tactics automatically, 
without any intervention from an instructor. The 
benefit to the warfighter from using GAMBIT is 
superior training against a more realistic simulated 
adversary. 

The following sections describe the notional 
training concept that GAMBIT would support, the 
characteristics of genetic algorithms that make 
them suitable for this task, and the approach to 
incorporating GAMBIT into a training architecture. 
The next section reviews related work in adaptive 
computer generated forces. The last sections 
describe a prototype implementation of GAMBIT, 
the results obtained from test runs, and our vision 
for future work. 



2. Training Concept of Operations 

The ultimate goal for the GAMBIT is to provide an 
tactic generation system that supports training.  
GAMBIT supports a training approach in which 
trainees practice a task multiple times. The goal for 
GAMBIT is not only to provide variety in the threat 
conditions, but to adapt to the trainee’s actions and 
exploit his weaknesses. For this research we  
propose a concept of operations (CONOPS) in 
which a human trainee is given the opportunity to 
make and execute a series of mission plans.  Based 
on the results of each mission, the trainee can 
modify their plan and improve the way they 
execute the plan.  Similarly, the insurgent force 
makes and executes a series of plans against the 
trainee. The insurgent force plans are generated by 
GAMBIT. 

For this effort, we are focusing on a convoy 
operations scenario.  The trainee in this scenario 
plays the role of convoy commander, and is 
responsible for the generation and execution of the 
convoy plan.  The convoy commander and the 
GAMBIT system generate plans given basic 
parameters of the mission.  The convoy 
commander’s plan would detail a route to his 
destination, order of march, deployment of support 
forces, and specific battle drills and operating 
procedures to use in response to suspicious 
situations and insurgent attacks.  Conversely, the 
plan generated by GAMBIT would specify what 
forces to use (e.g. IEDs, sniper teams, RPGs, rifles, 
etc.), where they are deployed, the sequence/ timing 
of attack actions and reactions they will use. 

The trainee would execute his plan in a simulation 
environment using some graphical user interface.  
The adversary forces either execut GAMBIT’s plan 
autonomously or use a human operator to translate 
the plan description to entity actions.   

After the exercise is over, both BLUFOR and 
OPFOR use observations and lessons learned from 
the engagement to correct their tactics.   Plan 
modifications on both sides are executed in a 
second convoy mission exercise, from which a 
second set of results can be used as input to the 
planning phase of a third exercise, and so on. 

This CONOPS provides the warfighter with a 
unique opportunity to train against an 
unpredictable, dynamic OPFOR capable of learning 
across exercises and adapting to exploit observed 
weaknesses.  Because he cannot predict the OPFOR 

behavior (from previous observations or otherwise), 
the trainee cannot ‘game’ the training system in 
anticipation of a particular ambush tactic.  Rather, 
he must develop and execute a plan that maximizes 
the chance of success against an unknown threat.  
Furthermore, the trainee must be capable of 
evolving new tactics in response to OPFOR, lest 
allowing the system to ‘game’ blue tactics. 

3. Genetic Algorithms 

First developed by John Holland in the 1960s, 
genetic algorithms (GAs) are a tool for developing 
optimized solutions to problem spaces that are too 
complex to solve analytically (Holland, 1975).  
GAs operate by creating a large population of 
random candidate solutions and allowing them to 
‘evolve’ into better ones. In the case of GAMBIT, 
each candidate solution is a specification of a 
particular OPFOR tactic.  The GA begins assessing 
the quality of each candidate using a fitness 
function. In our case, the fitness function is a 
simple combat simulation. From the initial 
population, the GA uses a selection mechanism to 
choose the most fit individuals to “reproduce” and 
form a second generation of candidate solutions. 
Individuals with a better fitness value are 
considered stronger solutions and are, as a result, 
given preference during selection. The reproduction 
process uses genetic operators such as crossover 
and mutation to generate new candidate solutions 
that are variations and combinations of existing 
solutions. 

Ideally, each generation’s population will contain 
individuals with better fitness values than the 
population that preceded it. The GA can then be run 
for an arbitrary number of generations until one 
individual’s fitness has reached a certain threshold. 
That solution is the output of the algorithm. 

The GA is well suited to the tactic creation problem 
that GAMBIT is trying to solve because, given an 
appropriately general representation of tactics 
system, the GA will search for effective solutions 
without regard for designer expectations or 
doctrinal bias. While the population should contain 
conventional and expected solutions, it also may 
contain unorthodox and unexpected—but effective-
-solutions. In contrast, tactics generated by humans 
can be expected to reflect the specific knowledge 
and bias of a particular human. Humans are less 
likely to consider the full range of potential 
solutions in the (large) solution space. 



The GA operators for generating new candidate 
solutions, mutation and crossover, are intended to 
effectively sample the search space of possible 
solutions. However, the large search space size 
presents a significant computational challenge, 
even for a GA approach.  Given the immense 
variety of tactics that can be represented for a 
convoy operations domain, a possible consequence 
is a situation where the GA simply flounders about, 
incapable of converging to any useful solution.  The 
key to avoiding this situation is to generate a 
representation of the domain such that the space is 
large enough to contain unexpected and effective 
solutions, but not too large to search in a reasonable 
time. Other efforts (see next section) have 
successfully found this balance, and our prototype 
implementation is also reasonably balanced; we 
thus believe that GAs are a useful approach to the 
tactic generation problem.   

4. GAMBIT System Architecture 

Figure 4.1 illustrates the conceptual architecture of 
a training system using GAMBIT.  The flow of 
information from scenario inputs to tactic execution 
is highlighted in red.  GAMBIT is provided with a 
set of initial constraints and an initial representation 
of BLUFOR tactics.  The initial constraints provide 
resource information to the system (e.g. resource 
cost and availability).  The BLUFOR tactics are 
used by the tactic evaluation module to play against 
candidate OPFOR tactics. 

GAMBIT begins each training iteration by 
generating a random pool of candidate tactics. 
Candidate tactics are fed into the tactics evaluation 
engine. This engine is a simulation that plays each 
candidate tactic against the given BLUFOR tactics 
in a simple convoy scenario. The results of the 
simulation run are scored to produce a fitness value 
for the candidate tactic. After all candidates are 
evaluated, the GA selects the ones with the highest 
fitness values and uses them to generate a new pool 
of tactics through recombination and mutation. The 
evaluation process is repeated for these tactics.  
This process is repeated for a fixed number of 
generations.  When the process is complete, the 
tactic with the highest fitness value is chosen as the 
output tactic for GAMBIT.  

One a tactic has been selected, the execution phase 
of the exercise can begin.  While the BLUFOR will 
be controlled by a human operator, the OPFOR 
tactics can be executed in the training simulation 
either manually (using a human operator) or 

through computer controlled behavior models.  
After each training exercise iteration the observed 
BLUFOR tactics are encoded by an operator (or, 
eventually, an automatic recognition module) for 
GAMBIT to use in the next interation. The system 
naturally evolves tactics across training itertions if 
the BLUFOR tactic input changes. 

 
Figure 4.1.  GAMBIT Training Architecture 

5. Related Work 

Numerous researchers have investigated the 
automatic generation of behavior for synthetic 
forces in military simulations. One portion of this 
work involves engineering knowledge into a system 
that can solve military problems using standard 
machine planning techniques from Artificial 
Intelligence (Benoit, Elsaesser et al. 1990). Other 
work seeks to develop systems that learn unit 
actions automatically, but use specific training 
examples to identify correct actions; for example, 
(Rajput, Karr et al. 1996). Both of these types of 
efforts have had success in producing rational 
behavior, but they produce tactics that conform to 
programmed doctrine. This is usually a desirable 
effect, but it is not suitable for a system that is 
required to produce unexpected tactics. 

A third category of the automatic behavior 
generation research uses unsupervised machine 



learning instead of learning from doctrinal training 
examples as above. The goal of this research is 
often to be able to generate intelligent, robust 
behavior without having to extract behavior details 
from a military expert. This approach can produce 
non-doctrinal behavior--unsatisfactory for many 
applications (Petty 2001), but exactly what is 
desired for GAMBIT. 

The research in behavior generation with 
unsupervised learning generally uses Genetic 
Algorithms.  Schultz et al. (1990) used GAs to learn 
rules that represent tactical plans. These rules can 
produce sequences of actions that result in a payoff. 
Schultz was motivated to use unsupervised learning 
because of a lack of training examples and an 
intractable domain theory—one requiring 
simulation to evaluate tactics. Schultz used 
symbolic condition-action rules, which allows 
better human understanding of the machine-
generated tactics, the potential for supplementing 
the GA approach with analytical learning, and the 
ability to seed the learning with human-provided 
knowledge. The GA found the best rule sets; within 
a rule set, reinforcement learning adjusted weights 
of individual rules to improve rule selection when 
more than one was eligible to fire.  

Several research projects have used GAs to 
generate low-level, physical aspects of entity 
actions. Fogel et al. (1996) applied evolutionary 
programming techniques to the generation of 
behavior in ModSAF, an entity-level combat 
simulation. This work addressed the control of 
speed of a vehicle along a route to minimize 
detection. Tyler et al. (1997) used GAs to find 
optimal routes for unit travel, considering multiple 
factors that were too complex to express in a cost 
function for a traditional path planning algorithm. 
Kewley and Embrechts (1998) used GAs to find 
optimal positions of units in a battle area, given an 
enemy course of action and Hayes and Schlabach 
(1998) found optimal assignments of units to axes 
of advance in a battle plan.  

The research described above showed that GAs can 
be used to determine effective behavior parameters 
for military entities and to find sequences of 
behavior to achieve mission objectives. Each of 
these experiments used some designer-provided 
structure within which the problem solution could 
be expressed to provide some bounds for the GA 
solution search; we are also following this 
approach. Our research in this project extends this 
earlier work in several respects.  First, tactics in 
GAMBIT include the composition of forces, 

including both the number of entities and the types 
of weapons.  Also, tactics in GAMBIT involve 
actions by multiple entities. The number and type 
of entities can vary. Finally, GAMBIT tactics 
include, in addition to the composition of forces, 
the behavior of the forces. 

6. Implementation 

6.1 GAMBIT’s Genetic Algorithm 

Our current implementation of the GAMBIT 
system uses a Proportional Genetic Algorithm 
(PGA) to evolve OPFOR tactics.  The PGA is a 
variation of the GA that uses a dynamically 
adaptable representation method (Wu and Garibay 
2002). Like a traditional GA, a PGA encodes 
solutions as linear strings.  A PGA, however, uses a 
multi-character alphabet and encodes information 
based on the relative amounts of the characters that 
exist in an individual.  The information represented 
by a PGA individual depends only on what is 
present on the individual and not on the order in 
which it is present.  As such, the PGA 
representation is location independent and 
eliminates issues of positional bias (Eshelman et al. 
1989). 

Information is encoded in the PGA representation 
by assigning one or more unique characters to each 
parameter or component of a solution.  The value of 
that parameter is determined from the relative 
proportions of the assigned characters of that 
parameter.  As a result, the order of the characters 
has no effect on the information that is encoded.  
Characters that exist are expressed and, 
consequently, interact with other expressed 
characters.  Characters that do not exist are not 
expressed and simply do not participate in the 
interactions of the expressed characters.  If desired, 
new characters (and thus, new encoded 
information) can be added dynamically at any point 
during a GA run by modifying the genetic operators 
to include the new characters. 

The selection methods and genetic operators that 
are used in the PGA are similar if not identical to 
that used in a traditional GA.  Selection remains 
unchanged.  Any of the common selection methods 
may be used in the PGA.  The linear representation 
format allows us to use traditional crossover 
operators as well.  The only operator that required 
some modification is mutation, because the 
individual characters that make up an individual are 
not binary.  Mutation is implemented as a random 



change to any possible character in the alphabet.  
The mutation rate defines the probability that each 
character will be mutated.  A character that does 
undergo mutation is randomly changed to one of 
the characters in the GA alphabet. 

We chose to use the PGA because of its natural 
flexibility for open-ended problems and its 
simplicity.  We do not know in advance how many 
weapons will make up a competitive strategy and 
the goal of our algorithm is to find both the right 
number and the right combination of weapons to 
make up a successful strategy.  The linear multi-
character representation is easy to manipulate using 
simple genetic operators and easy to decode. 

6.2 Representation of BLUFOR tactics 

The BLUFOR tactical choices were simplified in 
our experimental GAMBIT prototype. Since we 
were focusing on the ambush engagement in this 
research, we did not address route planning. 
Further, the convoy composition, march order, 
speed, and spacing are fixed. There is no 
opportunity to take actions to detect ambushes.  

The convoy commander’s decisions in Phase I are 
limited to commanding the convoy to perform one 
of several actions: 

• Continue move—vehicles continue on the 
route; used when no damage is done by the 
ambush, or when the engagement is complete 

• Stop in place—a reaction to an ambush 

• Move forward out of kill zone 

• Move forward or back away from a kill zone 

• Attack OPFOR by fire 

• Attack OPFOR by fire from standoff positions 

• Assault OPFOR positions 

• Evacuate casualties 

Most of these actions involve different actions by 
different vehicles; for example, the assault action 
uses an assault team and fire support vehicles. The 
actions mostly concern security vehicles, while the 
transport vehicles remain stopped (either in place or 
ahead in a safe area). Vehicle recovery and Render 
Safe Procedures were considered, but were not 
implemented due to lack of time. 

The reactive components of the BLUFOR  tactics 
require trigger conditions. Conditions that were 
made available for BLUFOR tactics include: 

• Initial attack on convoy just occurred 

• OPFOR are known to be present nearby (in 
attack positions) 

• There is a disabled vehicle and crew 

A complete BLUFOR tactic specification is a set of 
condition-action rules that specify unit level actions 
and the conditions that trigger them.  

6.3 Representation of OPFOR tactics 

As with BLUFOR tactics, OPFOR tactics were 
simple in the GAMBIT prototype. We do not model 
mortars, roadblocks, pedestrians, civilian traffic or 
notable civilian buildings. There is no OPFOR 
choice about where to set up the ambush—it is 
notionally in a good place—or where to set up 
forces relative to the ambush point. All OPFOR are 
assumed to be in adequate attack positions.The 
OPFOR are considered to operate in independent 
teams of one to three people. The teams can be 
armed with an IED, an RPG, a sniper rifle, or 
assault rifles. Each team has a choice of when to 
initiate its attack, and when to break off its attack 
and withdraw (to safety; no BLUFOR pursuit is 
allowed). The attack initiation conditions include: 

• Make the initial attack on the convoy 

• Initiate attack when there is a stopped vehicle. 

• Initiate attack when there is a dismounted 
vehicle crew 

• Wait a fixed period of time and then attack 

The OPFOR teams continue attacking until they 
withdraw. The withdrawal conditions include: 

• After one attack 

• Never 

• After 3 attacks 

• After a fixed time, whether or not an attack 
was triggered first. 

The complete OPFOR tactic specification consists 
of the number of teams, and for each team the 
weapon type, the attack initiation condition, and the 
withdrawal condition. 

 



6.4 Tactic Evaluation Engine 

Because of the complexity of even the simplest of 
convoy interdiction tactics, it is not sufficient to 
merely plug tactic parameters into a function to 
determine its fitness.  Rather, tactics must be 
evaluated through execution against a reactive 
BLUFOR opponent.  To do this, we developed an 
abstract tactic evaluation engine that takes as input 
both OPFOR and BLUFOR tactics and runs a 
simulation of how those tactics might play out in an 
actual exercise.  The results of that simulation then 
determine the actual fitness of the candidate tactic. 

The evaluation engine models OPFOR teams, 
BLUFOR vehicles, and BLUFOR convoy support 
crews. Each entity has discrete states.  This state 
includes an entity’s current role, whether it is 
suppressed, whether it is in cover, and a damage 
level. BLUFOR tactics are represented as a set of 
rules that trigger different unit-level actions in 
appropriate conditions. Unit level actions include 
traveling in convoy, attacking by fire, assaulting, 
and performing casualty evacuation. Each unit level 
action is itself defined by a set of rules that describe 
what individual entities (with different roles) do in 
that unit behavior. For example, once assigned the 
CASEVAC evacuation role, a support crew returns 
to the primary attack location to assist other 
damaged BLUFOR entities. 

OPFOR is represented as a set of small teams. The 
teams may employ one weapon (in our current 
implementation)--an IED, rifles, an RPG, or a 
sniper. The OPFOR tactic defines the number of 
teams, what type of weapon each employs, the 
conditions that trigger its attack, and the conditions 
that trigger its withdrawal. 

The simulation consists of a set of discrete 
locations at which OPFOR and BLUFOR teams can 
move between and stage attacks.  The locations are 
relative to the primary OPFOR attack location 
along the convoy route.  A vulnerability 
relationship is defined between each points; for 
example, BLUFOR teams can travel to location far 
enough forward or rear of the primary attack 
location along the road to be safe from OPFOR 
attack.  

. The engine executes by stepping through a series 
of discrete turns (see Figure 6.1).  At each turn, the 
best matching action for the current OPFOR and 
BLUFOR tactics is selected for each entity.  
Actions are then executed simultaneously, along 
with state changes.  The engine will continue to run 

for a set maximum number of turns or until any of 
several termination conditions match, indicating 
that no further state changes can occur.   

 

 
Figure 6.1.  Tactic Evaluation Engine 

Action selection for OPFOR teams is based on the 
tactic triple–team weapon type, withdrawal 
condition, and attack condition–passed in from the 
GA.  If a team’s withdrawal condition is met, the 
withdrawal action will be selected immediately 
with no further decisions made.  Otherwise, if a 
team is not suppressed and is able to attack, the 
team’s attack condition is evaluated.  If met and a 
suitable BLUFOR target based on the tactic is 
within range, the attack action is selected.  If 
neither condition is met, the OPFOR team remains 
in cover. 

The simulation models the effects of all combat 
actions. These effects depend on the weapon type, 
the target type, the range (in discrete values), 
whether the target is moving, whether the attacker 
is damaged, and whether the target is in cover. 
Effects can include suppression and, for OPFOR, 
forced withdrawal. The combat models were 
fabricated to give an approximately correct feel to 
the combat results, but were not taken from any real 
data. 

Certain actions involve the use of random values to 
model a more real-world variability in outcomes.  
The combat model includes probability modifiers 



for various conditions.  For example, damaged 
entities are less effective attackers, so a damaged 
entity would incur a penalty.  A modified random 
number draw is mapped to a results table that 
describes the state changes that occur.  For 
example, a low attack roll might only suppress the 
target while a better attack roll could result in both 
suppressing and damaging the target. 

After all actions have been executed and the 
resulting state changes applied, the simulation 
checks against several early termination conditions 
to determine whether the simulation loop can end 
prematurely and return control to the GA.  A 
termination condition will match when no further 
changes can be made and the simulation is in its 
final state.  For example, after all OPFOR teams 
have been destroyed or all BLUFOR teams have 
reached a point safely ahead of the primary attack 
location, the simulation can evaluate and return 
immediately. 

The results of the evaluation engine are then used to 
calculate a fitness for each OPFOR tactic candidate.  
Fitness values simply reflect the utility of 
damaging, destroying or delaying the BLUFOR 
convoy against the cost of the resources used and 
damage incurred. 

7. Results 

With our prototype implementation of GAMBIT, 
we were able to demonstrate several basic results. 
First, the expected fitness of the tactics generated 
by GAMBIT increased steadily over time and 
produced a fairly effective tactic (see Figure7.1). 
The expected fitness is considered because the 
fitness function includes random outcomes in the 
combat models, so the results of a tactic could vary 
significantly from trial to trial. GAMBIT evaluated 
each tactic ten times and used the average result as 
the fitness.  

The prototype was tested in an experiment in which 
OPFOR tactics were generated for two different 
BLUFOR tactics. The different BLUFOR tactics 
used different responses to the ambush, and 
employed different battle drills from the list given 
in Section 6.2. The two BLUFOR tactics are 
described in Tables 7.1 and 7.2. 

Table 7.1 BLUFOR tactic 1 
Condition Action 
First attack on convoy React to 

ambush—stop in 
place 

There is at least one OPFOR 
team in an enemy occupied 
position, AND 
there is a disabled vehicle with 
a crew assigned to it 

Attack by fire 

No OPFOR in an enemy 
occupied position, AND 
there is a disabled vehicle with 
a crew assigned to it  

Evacuate 
casualties 

There are no crews assigned to 
disabled vehicles 

Continue convoy 

Table 7.2 BLUFOR tactic 2 
Condition Action 
First attack on convoy React to ambush—

move forward out of 
kill zone 

There is at least one 
OPFOR team in an enemy 
occupied position, AND 
there is a disabled vehicle 
with a crew 

Standoff attack by 
fire 

No OPFOR in an enemy 
occupied position AND 
there is a disabled vehicle 
with a crew assigned to it 

Evacuate casualties 

There are no crews 
assigned to disabled 
vehicles 

Continue convoy 

In each case, GAMBIT produced an OPFOR tactic 
that resulted in a credible attack on BLUFOR. 
BLUFOR tactic 1 includes a response to stop (at 
least briefly) whenever there is an attack. The best 
OPFOR tactic found included one IED attack on 
the moving convoy, and then six teams that 
triggered their attacks when the convoy stopped. 
This achieved success because the stop triggered 
the remainder of the attacks. IEDs were the favored 
weapon because they were able to target additional 
convoy vehicles driving away with more success 
than other weapons (as determined by the combat 
model in the simulation). The BLUFOR tactic 2 
response to an attack is to move immediately out of 
the kill zone; therefore the initial OPFOR attack 
had to disable a vehicle in order to provide a chance 
for further attacks. The OPFOR tactic in this case 
included five IED attacks on the moving convoy, 
and two RPG follow up attacks. These OPFOR 
tactics are summarized in Tables 7.3 and 7.4 below. 



Table 7.3 OPFOR tactic 1 
Weapon Attack condition Withdraw 

condition 
IED initial - 
IED after 3 turns - 
IED after 3 turns - 
IED after 3 turns - 
IED stopped vehicle 

present 
- 

IED stopped vehicle 
present 

- 

RPG stopped vehicle 
present 

Never 

RPG dismounted infantry 
present 

Never 

Sniper stopped vehicle 
present 

Never 

Table 7.4. OPFOR tactic 2 
Weapon Attack condition Withdraw 

condition 
IED initial - 
IED initial - 
IED initial - 
IED initial - 
IED initial - 
RPG stopped vehicle 

present 
immediately 

RPG after 3 turns Never 

The GA in our prototype was run with a population 
size of 300, a time limit of 200 generations, and a 
sample size of 10 runs for each tactic. It completed 

its calculations on an ordinary laptop PC in about 3 
minutes. 

8. Future Directions 

Based on our progress to date, we have a clear set 
of objectives to achieve going forward to complete 
a GAMBIT prototype per the requirements of our 
training CONOPS.  First, we intend to continue and 
expand on our convoy operations domain analysis.  
We have conducted an analysis of the convoy 
operations domain and used that information to 
construct an abstract tactic evaluation system that 
mimicked elements of that domain.  We intend to 
extend that system to allow for the selection of 
more robust and detailed tactics, which will require 
a more detailed analysis.   

We also plan to refine our representation of 
BLUFOR to support trainee tactic evolution across 
repeated exercises.  One of the most important 
features of the GAMBIT system is the feedback 
loop from the training simulation that allows 
GAMBIT to generate new tactics that exploit 
observed weaknesses in trainee behavior from 
previous exercises.  We plan to refine our current 
representation of BLUFOR so that a human 
operator can, through a simple user inter-face or 
otherwise, encode observed trainee behavior and 
pass it back so it can be used to evaluate a new 
population of tactics. 

We will also refine our representation of OPFOR 
and the capabilities of or abstract tactics evaluation 
engine.  As discussed above, we intend to expand 
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Figure 7.1 Increase of expected fitness of OPFOR tactic over 100 generations 



the GAMBIT prototype so that it can generate more 
robust and detailed OPFOR tactics.  This will 
require the expansion of not only our existing tactic 
representation but also of our existing tactic 
evaluation engine.  Currently, OPFOR tactics in 
GAMBIT represent a set of teams, their weapon 
types, and simple attack and withdrawal conditions 
for each team.  We in-tend to expand on this 
representation to specify more detailed team types 
and composite attack and withdrawal conditions, 
among other parameters.  Similarly, we intend to 
expand our evaluation engine to represent a more 
complex convoy operations scenario with more 
decision points and a more robust representation of 
the players and environment.  We will also have to 
refine our GA design to match this extended 
representation, examining biases and investigating 
the relationship between the problem space size and 
the GA’s capability to generate solutions in 
reasonable time. 

Finally, we plan to develop OPFOR behavior 
models capable of executing GAMBIT tactics and 
integrate them within an existing training 
simulation.  In order to demonstrate the execution 
of GAMBIT-generated OPFOR tactics without the 
use of a human operator, it will be necessary to 
encode behavior models, within our chosen training 
simulation environment capable of executing these 
tactics.  We envision these models to be imbued 
with the ability to perform atomic behaviors (such 
as IED deployment, retreat, etc.) autonomously, but 
consume the contents of tactics generated by 
GAMBIT to determine conditions and sequencing. 
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