
Asymmetric Adversary Tactics for Synthetic Training Environments

Brian S. Stensrud, Douglas A. Reece, Nicholas Piegdon
Soar Technology, Inc.

3361 Rouse Road, Suite #175, Orlando, FL 32817
{stensrud, douglas.reece, piegdon}@soartech.com

Annie S. Wu

University of Central Florida
4000 Central Florida Blvd., Orlando, FL 32816

aswu@cs.ucf.edu

ABSTRACT: We describe an approach for dynamically generating asymmetric tactics that can
drive adversary behaviors in synthetic training environments. GAMBIT (Genetically Actualized
Models of Behavior for Insurgent Tactics) features a genetic algorithm and tactic evaluation engine
that - provided a computational specification of a domain and notional representation of the trainee’s
tactics - will automatically generate a tactic that will be effective given those inputs. That tactic can
then be executed using embedded behavior models within a virtual or constructive simulation.
GAMBIT-generated tactics can evolve across training exercises by modifying the representation of
the trainee’s tactics in response to his observed behavior.

1. Introduction

The use of asymmetric strategy and tactics has
proven to be an effective threat against U.S.-led
forces in the Middle East. While U.S. forces have a
significant military advantage over the insurgent
adversaries in terms of conventional military force,
these adversaries are nonetheless able to further
their goals through a variety of means. The
adversary strategies and tactics are asymmetric
because they do not attempt to counter U.S.
strengths with equivalent strengths; instead they
attack areas where it is hard for the U.S. to apply its
strength. As U.S. forces adapt to eliminate the areas
where they are vulnerable to attack, the insurgent
forces change their tactics to find and exploit other
vulnerable areas. This adaptation is a significant
change from adversaries that are assumed to follow
a fixed doctrine.

The evolving nature of the threat poses a challenge
to standard training practices. Training programs,
especially those based on computer simulation
scenarios, use a fixed seet of threat tactics. How can
any fixed training program train Soldiers to counter
an evolving threat? The answer is that expert
humans play the role of asymmetric adversaries in
training exercises. The human simulation operators
can not only employ known, effective adversary
tactics, but can creatively improvise new tactics and
adapt to exploit the trainee’s weaknesses.

The problem with using human role players in
training systems is that creative, expert players are
not always available. This is particularly true for
deployed training systems. What is needed is a
way to make computer generated forces in
simulations adapt to trainee tactics—providing not
only a varied opposing force, but an adversary that
exploits weaknesses in trainee tactics. To explore
how to meet this need, Soar Technology developed
GAMBIT–Genetically Actualized Models of
Behavior for Insurgent Tactics. The GAMBIT
system features a genetic algorithm (GA)-based
tactics generator, capable of searching a complex
space of possible actions for novel, effective tactics
for adversaries to employ against the trainee. The
vision is to generate these tactics automatically,
without any intervention from an instructor. The
benefit to the warfighter from using GAMBIT is
superior training against a more realistic simulated
adversary.

The following sections describe the notional
training concept that GAMBIT would support, the
characteristics of genetic algorithms that make
them suitable for this task, and the approach to
incorporating GAMBIT into a training architecture.
The next section reviews related work in adaptive
computer generated forces. The last sections
describe a prototype implementation of GAMBIT,
the results obtained from test runs, and our vision
for future work.

2. Training Concept of Operations

The ultimate goal for the GAMBIT is to provide an
tactic generation system that supports training.
GAMBIT supports a training approach in which
trainees practice a task multiple times. The goal for
GAMBIT is not only to provide variety in the threat
conditions, but to adapt to the trainee’s actions and
exploit his weaknesses. For this research we
propose a concept of operations (CONOPS) in
which a human trainee is given the opportunity to
make and execute a series of mission plans. Based
on the results of each mission, the trainee can
modify their plan and improve the way they
execute the plan. Similarly, the insurgent force
makes and executes a series of plans against the
trainee. The insurgent force plans are generated by
GAMBIT.

For this effort, we are focusing on a convoy
operations scenario. The trainee in this scenario
plays the role of convoy commander, and is
responsible for the generation and execution of the
convoy plan. The convoy commander and the
GAMBIT system generate plans given basic
parameters of the mission. The convoy
commander’s plan would detail a route to his
destination, order of march, deployment of support
forces, and specific battle drills and operating
procedures to use in response to suspicious
situations and insurgent attacks. Conversely, the
plan generated by GAMBIT would specify what
forces to use (e.g. IEDs, sniper teams, RPGs, rifles,
etc.), where they are deployed, the sequence/ timing
of attack actions and reactions they will use.

The trainee would execute his plan in a simulation
environment using some graphical user interface.
The adversary forces either execut GAMBIT’s plan
autonomously or use a human operator to translate
the plan description to entity actions.

After the exercise is over, both BLUFOR and
OPFOR use observations and lessons learned from
the engagement to correct their tactics. Plan
modifications on both sides are executed in a
second convoy mission exercise, from which a
second set of results can be used as input to the
planning phase of a third exercise, and so on.

This CONOPS provides the warfighter with a
unique opportunity to train against an
unpredictable, dynamic OPFOR capable of learning
across exercises and adapting to exploit observed
weaknesses. Because he cannot predict the OPFOR

behavior (from previous observations or otherwise),
the trainee cannot ‘game’ the training system in
anticipation of a particular ambush tactic. Rather,
he must develop and execute a plan that maximizes
the chance of success against an unknown threat.
Furthermore, the trainee must be capable of
evolving new tactics in response to OPFOR, lest
allowing the system to ‘game’ blue tactics.

3. Genetic Algorithms

First developed by John Holland in the 1960s,
genetic algorithms (GAs) are a tool for developing
optimized solutions to problem spaces that are too
complex to solve analytically (Holland, 1975).
GAs operate by creating a large population of
random candidate solutions and allowing them to
‘evolve’ into better ones. In the case of GAMBIT,
each candidate solution is a specification of a
particular OPFOR tactic. The GA begins assessing
the quality of each candidate using a fitness
function. In our case, the fitness function is a
simple combat simulation. From the initial
population, the GA uses a selection mechanism to
choose the most fit individuals to “reproduce” and
form a second generation of candidate solutions.
Individuals with a better fitness value are
considered stronger solutions and are, as a result,
given preference during selection. The reproduction
process uses genetic operators such as crossover
and mutation to generate new candidate solutions
that are variations and combinations of existing
solutions.

Ideally, each generation’s population will contain
individuals with better fitness values than the
population that preceded it. The GA can then be run
for an arbitrary number of generations until one
individual’s fitness has reached a certain threshold.
That solution is the output of the algorithm.

The GA is well suited to the tactic creation problem
that GAMBIT is trying to solve because, given an
appropriately general representation of tactics
system, the GA will search for effective solutions
without regard for designer expectations or
doctrinal bias. While the population should contain
conventional and expected solutions, it also may
contain unorthodox and unexpected—but effective-
-solutions. In contrast, tactics generated by humans
can be expected to reflect the specific knowledge
and bias of a particular human. Humans are less
likely to consider the full range of potential
solutions in the (large) solution space.

The GA operators for generating new candidate
solutions, mutation and crossover, are intended to
effectively sample the search space of possible
solutions. However, the large search space size
presents a significant computational challenge,
even for a GA approach. Given the immense
variety of tactics that can be represented for a
convoy operations domain, a possible consequence
is a situation where the GA simply flounders about,
incapable of converging to any useful solution. The
key to avoiding this situation is to generate a
representation of the domain such that the space is
large enough to contain unexpected and effective
solutions, but not too large to search in a reasonable
time. Other efforts (see next section) have
successfully found this balance, and our prototype
implementation is also reasonably balanced; we
thus believe that GAs are a useful approach to the
tactic generation problem.

4. GAMBIT System Architecture

Figure 4.1 illustrates the conceptual architecture of
a training system using GAMBIT. The flow of
information from scenario inputs to tactic execution
is highlighted in red. GAMBIT is provided with a
set of initial constraints and an initial representation
of BLUFOR tactics. The initial constraints provide
resource information to the system (e.g. resource
cost and availability). The BLUFOR tactics are
used by the tactic evaluation module to play against
candidate OPFOR tactics.

GAMBIT begins each training iteration by
generating a random pool of candidate tactics.
Candidate tactics are fed into the tactics evaluation
engine. This engine is a simulation that plays each
candidate tactic against the given BLUFOR tactics
in a simple convoy scenario. The results of the
simulation run are scored to produce a fitness value
for the candidate tactic. After all candidates are
evaluated, the GA selects the ones with the highest
fitness values and uses them to generate a new pool
of tactics through recombination and mutation. The
evaluation process is repeated for these tactics.
This process is repeated for a fixed number of
generations. When the process is complete, the
tactic with the highest fitness value is chosen as the
output tactic for GAMBIT.

One a tactic has been selected, the execution phase
of the exercise can begin. While the BLUFOR will
be controlled by a human operator, the OPFOR
tactics can be executed in the training simulation
either manually (using a human operator) or

through computer controlled behavior models.
After each training exercise iteration the observed
BLUFOR tactics are encoded by an operator (or,
eventually, an automatic recognition module) for
GAMBIT to use in the next interation. The system
naturally evolves tactics across training itertions if
the BLUFOR tactic input changes.

Figure 4.1. GAMBIT Training Architecture

5. Related Work

Numerous researchers have investigated the
automatic generation of behavior for synthetic
forces in military simulations. One portion of this
work involves engineering knowledge into a system
that can solve military problems using standard
machine planning techniques from Artificial
Intelligence (Benoit, Elsaesser et al. 1990). Other
work seeks to develop systems that learn unit
actions automatically, but use specific training
examples to identify correct actions; for example,
(Rajput, Karr et al. 1996). Both of these types of
efforts have had success in producing rational
behavior, but they produce tactics that conform to
programmed doctrine. This is usually a desirable
effect, but it is not suitable for a system that is
required to produce unexpected tactics.

A third category of the automatic behavior
generation research uses unsupervised machine

learning instead of learning from doctrinal training
examples as above. The goal of this research is
often to be able to generate intelligent, robust
behavior without having to extract behavior details
from a military expert. This approach can produce
non-doctrinal behavior--unsatisfactory for many
applications (Petty 2001), but exactly what is
desired for GAMBIT.

The research in behavior generation with
unsupervised learning generally uses Genetic
Algorithms. Schultz et al. (1990) used GAs to learn
rules that represent tactical plans. These rules can
produce sequences of actions that result in a payoff.
Schultz was motivated to use unsupervised learning
because of a lack of training examples and an
intractable domain theory—one requiring
simulation to evaluate tactics. Schultz used
symbolic condition-action rules, which allows
better human understanding of the machine-
generated tactics, the potential for supplementing
the GA approach with analytical learning, and the
ability to seed the learning with human-provided
knowledge. The GA found the best rule sets; within
a rule set, reinforcement learning adjusted weights
of individual rules to improve rule selection when
more than one was eligible to fire.

Several research projects have used GAs to
generate low-level, physical aspects of entity
actions. Fogel et al. (1996) applied evolutionary
programming techniques to the generation of
behavior in ModSAF, an entity-level combat
simulation. This work addressed the control of
speed of a vehicle along a route to minimize
detection. Tyler et al. (1997) used GAs to find
optimal routes for unit travel, considering multiple
factors that were too complex to express in a cost
function for a traditional path planning algorithm.
Kewley and Embrechts (1998) used GAs to find
optimal positions of units in a battle area, given an
enemy course of action and Hayes and Schlabach
(1998) found optimal assignments of units to axes
of advance in a battle plan.

The research described above showed that GAs can
be used to determine effective behavior parameters
for military entities and to find sequences of
behavior to achieve mission objectives. Each of
these experiments used some designer-provided
structure within which the problem solution could
be expressed to provide some bounds for the GA
solution search; we are also following this
approach. Our research in this project extends this
earlier work in several respects. First, tactics in
GAMBIT include the composition of forces,

including both the number of entities and the types
of weapons. Also, tactics in GAMBIT involve
actions by multiple entities. The number and type
of entities can vary. Finally, GAMBIT tactics
include, in addition to the composition of forces,
the behavior of the forces.

6. Implementation

6.1 GAMBIT’s Genetic Algorithm

Our current implementation of the GAMBIT
system uses a Proportional Genetic Algorithm
(PGA) to evolve OPFOR tactics. The PGA is a
variation of the GA that uses a dynamically
adaptable representation method (Wu and Garibay
2002). Like a traditional GA, a PGA encodes
solutions as linear strings. A PGA, however, uses a
multi-character alphabet and encodes information
based on the relative amounts of the characters that
exist in an individual. The information represented
by a PGA individual depends only on what is
present on the individual and not on the order in
which it is present. As such, the PGA
representation is location independent and
eliminates issues of positional bias (Eshelman et al.
1989).

Information is encoded in the PGA representation
by assigning one or more unique characters to each
parameter or component of a solution. The value of
that parameter is determined from the relative
proportions of the assigned characters of that
parameter. As a result, the order of the characters
has no effect on the information that is encoded.
Characters that exist are expressed and,
consequently, interact with other expressed
characters. Characters that do not exist are not
expressed and simply do not participate in the
interactions of the expressed characters. If desired,
new characters (and thus, new encoded
information) can be added dynamically at any point
during a GA run by modifying the genetic operators
to include the new characters.

The selection methods and genetic operators that
are used in the PGA are similar if not identical to
that used in a traditional GA. Selection remains
unchanged. Any of the common selection methods
may be used in the PGA. The linear representation
format allows us to use traditional crossover
operators as well. The only operator that required
some modification is mutation, because the
individual characters that make up an individual are
not binary. Mutation is implemented as a random

change to any possible character in the alphabet.
The mutation rate defines the probability that each
character will be mutated. A character that does
undergo mutation is randomly changed to one of
the characters in the GA alphabet.

We chose to use the PGA because of its natural
flexibility for open-ended problems and its
simplicity. We do not know in advance how many
weapons will make up a competitive strategy and
the goal of our algorithm is to find both the right
number and the right combination of weapons to
make up a successful strategy. The linear multi-
character representation is easy to manipulate using
simple genetic operators and easy to decode.

6.2 Representation of BLUFOR tactics

The BLUFOR tactical choices were simplified in
our experimental GAMBIT prototype. Since we
were focusing on the ambush engagement in this
research, we did not address route planning.
Further, the convoy composition, march order,
speed, and spacing are fixed. There is no
opportunity to take actions to detect ambushes.

The convoy commander’s decisions in Phase I are
limited to commanding the convoy to perform one
of several actions:

• Continue move—vehicles continue on the
route; used when no damage is done by the
ambush, or when the engagement is complete

• Stop in place—a reaction to an ambush

• Move forward out of kill zone

• Move forward or back away from a kill zone

• Attack OPFOR by fire

• Attack OPFOR by fire from standoff positions

• Assault OPFOR positions

• Evacuate casualties

Most of these actions involve different actions by
different vehicles; for example, the assault action
uses an assault team and fire support vehicles. The
actions mostly concern security vehicles, while the
transport vehicles remain stopped (either in place or
ahead in a safe area). Vehicle recovery and Render
Safe Procedures were considered, but were not
implemented due to lack of time.

The reactive components of the BLUFOR tactics
require trigger conditions. Conditions that were
made available for BLUFOR tactics include:

• Initial attack on convoy just occurred

• OPFOR are known to be present nearby (in
attack positions)

• There is a disabled vehicle and crew

A complete BLUFOR tactic specification is a set of
condition-action rules that specify unit level actions
and the conditions that trigger them.

6.3 Representation of OPFOR tactics

As with BLUFOR tactics, OPFOR tactics were
simple in the GAMBIT prototype. We do not model
mortars, roadblocks, pedestrians, civilian traffic or
notable civilian buildings. There is no OPFOR
choice about where to set up the ambush—it is
notionally in a good place—or where to set up
forces relative to the ambush point. All OPFOR are
assumed to be in adequate attack positions.The
OPFOR are considered to operate in independent
teams of one to three people. The teams can be
armed with an IED, an RPG, a sniper rifle, or
assault rifles. Each team has a choice of when to
initiate its attack, and when to break off its attack
and withdraw (to safety; no BLUFOR pursuit is
allowed). The attack initiation conditions include:

• Make the initial attack on the convoy

• Initiate attack when there is a stopped vehicle.

• Initiate attack when there is a dismounted
vehicle crew

• Wait a fixed period of time and then attack

The OPFOR teams continue attacking until they
withdraw. The withdrawal conditions include:

• After one attack

• Never

• After 3 attacks

• After a fixed time, whether or not an attack
was triggered first.

The complete OPFOR tactic specification consists
of the number of teams, and for each team the
weapon type, the attack initiation condition, and the
withdrawal condition.

6.4 Tactic Evaluation Engine

Because of the complexity of even the simplest of
convoy interdiction tactics, it is not sufficient to
merely plug tactic parameters into a function to
determine its fitness. Rather, tactics must be
evaluated through execution against a reactive
BLUFOR opponent. To do this, we developed an
abstract tactic evaluation engine that takes as input
both OPFOR and BLUFOR tactics and runs a
simulation of how those tactics might play out in an
actual exercise. The results of that simulation then
determine the actual fitness of the candidate tactic.

The evaluation engine models OPFOR teams,
BLUFOR vehicles, and BLUFOR convoy support
crews. Each entity has discrete states. This state
includes an entity’s current role, whether it is
suppressed, whether it is in cover, and a damage
level. BLUFOR tactics are represented as a set of
rules that trigger different unit-level actions in
appropriate conditions. Unit level actions include
traveling in convoy, attacking by fire, assaulting,
and performing casualty evacuation. Each unit level
action is itself defined by a set of rules that describe
what individual entities (with different roles) do in
that unit behavior. For example, once assigned the
CASEVAC evacuation role, a support crew returns
to the primary attack location to assist other
damaged BLUFOR entities.

OPFOR is represented as a set of small teams. The
teams may employ one weapon (in our current
implementation)--an IED, rifles, an RPG, or a
sniper. The OPFOR tactic defines the number of
teams, what type of weapon each employs, the
conditions that trigger its attack, and the conditions
that trigger its withdrawal.

The simulation consists of a set of discrete
locations at which OPFOR and BLUFOR teams can
move between and stage attacks. The locations are
relative to the primary OPFOR attack location
along the convoy route. A vulnerability
relationship is defined between each points; for
example, BLUFOR teams can travel to location far
enough forward or rear of the primary attack
location along the road to be safe from OPFOR
attack.

. The engine executes by stepping through a series
of discrete turns (see Figure 6.1). At each turn, the
best matching action for the current OPFOR and
BLUFOR tactics is selected for each entity.
Actions are then executed simultaneously, along
with state changes. The engine will continue to run

for a set maximum number of turns or until any of
several termination conditions match, indicating
that no further state changes can occur.

Figure 6.1. Tactic Evaluation Engine

Action selection for OPFOR teams is based on the
tactic triple–team weapon type, withdrawal
condition, and attack condition–passed in from the
GA. If a team’s withdrawal condition is met, the
withdrawal action will be selected immediately
with no further decisions made. Otherwise, if a
team is not suppressed and is able to attack, the
team’s attack condition is evaluated. If met and a
suitable BLUFOR target based on the tactic is
within range, the attack action is selected. If
neither condition is met, the OPFOR team remains
in cover.

The simulation models the effects of all combat
actions. These effects depend on the weapon type,
the target type, the range (in discrete values),
whether the target is moving, whether the attacker
is damaged, and whether the target is in cover.
Effects can include suppression and, for OPFOR,
forced withdrawal. The combat models were
fabricated to give an approximately correct feel to
the combat results, but were not taken from any real
data.

Certain actions involve the use of random values to
model a more real-world variability in outcomes.
The combat model includes probability modifiers

for various conditions. For example, damaged
entities are less effective attackers, so a damaged
entity would incur a penalty. A modified random
number draw is mapped to a results table that
describes the state changes that occur. For
example, a low attack roll might only suppress the
target while a better attack roll could result in both
suppressing and damaging the target.

After all actions have been executed and the
resulting state changes applied, the simulation
checks against several early termination conditions
to determine whether the simulation loop can end
prematurely and return control to the GA. A
termination condition will match when no further
changes can be made and the simulation is in its
final state. For example, after all OPFOR teams
have been destroyed or all BLUFOR teams have
reached a point safely ahead of the primary attack
location, the simulation can evaluate and return
immediately.

The results of the evaluation engine are then used to
calculate a fitness for each OPFOR tactic candidate.
Fitness values simply reflect the utility of
damaging, destroying or delaying the BLUFOR
convoy against the cost of the resources used and
damage incurred.

7. Results

With our prototype implementation of GAMBIT,
we were able to demonstrate several basic results.
First, the expected fitness of the tactics generated
by GAMBIT increased steadily over time and
produced a fairly effective tactic (see Figure7.1).
The expected fitness is considered because the
fitness function includes random outcomes in the
combat models, so the results of a tactic could vary
significantly from trial to trial. GAMBIT evaluated
each tactic ten times and used the average result as
the fitness.

The prototype was tested in an experiment in which
OPFOR tactics were generated for two different
BLUFOR tactics. The different BLUFOR tactics
used different responses to the ambush, and
employed different battle drills from the list given
in Section 6.2. The two BLUFOR tactics are
described in Tables 7.1 and 7.2.

Table 7.1 BLUFOR tactic 1
Condition Action
First attack on convoy React to

ambush—stop in
place

There is at least one OPFOR
team in an enemy occupied
position, AND
there is a disabled vehicle with
a crew assigned to it

Attack by fire

No OPFOR in an enemy
occupied position, AND
there is a disabled vehicle with
a crew assigned to it

Evacuate
casualties

There are no crews assigned to
disabled vehicles

Continue convoy

Table 7.2 BLUFOR tactic 2
Condition Action
First attack on convoy React to ambush—

move forward out of
kill zone

There is at least one
OPFOR team in an enemy
occupied position, AND
there is a disabled vehicle
with a crew

Standoff attack by
fire

No OPFOR in an enemy
occupied position AND
there is a disabled vehicle
with a crew assigned to it

Evacuate casualties

There are no crews
assigned to disabled
vehicles

Continue convoy

In each case, GAMBIT produced an OPFOR tactic
that resulted in a credible attack on BLUFOR.
BLUFOR tactic 1 includes a response to stop (at
least briefly) whenever there is an attack. The best
OPFOR tactic found included one IED attack on
the moving convoy, and then six teams that
triggered their attacks when the convoy stopped.
This achieved success because the stop triggered
the remainder of the attacks. IEDs were the favored
weapon because they were able to target additional
convoy vehicles driving away with more success
than other weapons (as determined by the combat
model in the simulation). The BLUFOR tactic 2
response to an attack is to move immediately out of
the kill zone; therefore the initial OPFOR attack
had to disable a vehicle in order to provide a chance
for further attacks. The OPFOR tactic in this case
included five IED attacks on the moving convoy,
and two RPG follow up attacks. These OPFOR
tactics are summarized in Tables 7.3 and 7.4 below.

Table 7.3 OPFOR tactic 1
Weapon Attack condition Withdraw

condition
IED initial -
IED after 3 turns -
IED after 3 turns -
IED after 3 turns -
IED stopped vehicle

present
-

IED stopped vehicle
present

-

RPG stopped vehicle
present

Never

RPG dismounted infantry
present

Never

Sniper stopped vehicle
present

Never

Table 7.4. OPFOR tactic 2
Weapon Attack condition Withdraw

condition
IED initial -
IED initial -
IED initial -
IED initial -
IED initial -
RPG stopped vehicle

present
immediately

RPG after 3 turns Never

The GA in our prototype was run with a population
size of 300, a time limit of 200 generations, and a
sample size of 10 runs for each tactic. It completed

its calculations on an ordinary laptop PC in about 3
minutes.

8. Future Directions

Based on our progress to date, we have a clear set
of objectives to achieve going forward to complete
a GAMBIT prototype per the requirements of our
training CONOPS. First, we intend to continue and
expand on our convoy operations domain analysis.
We have conducted an analysis of the convoy
operations domain and used that information to
construct an abstract tactic evaluation system that
mimicked elements of that domain. We intend to
extend that system to allow for the selection of
more robust and detailed tactics, which will require
a more detailed analysis.

We also plan to refine our representation of
BLUFOR to support trainee tactic evolution across
repeated exercises. One of the most important
features of the GAMBIT system is the feedback
loop from the training simulation that allows
GAMBIT to generate new tactics that exploit
observed weaknesses in trainee behavior from
previous exercises. We plan to refine our current
representation of BLUFOR so that a human
operator can, through a simple user inter-face or
otherwise, encode observed trainee behavior and
pass it back so it can be used to evaluate a new
population of tactics.

We will also refine our representation of OPFOR
and the capabilities of or abstract tactics evaluation
engine. As discussed above, we intend to expand

Best fitness trend over generations
(BLUFOR tactic 1)

60

80

100

120

Fi
tn

es
s

va
lu

e

Figure 7.1 Increase of expected fitness of OPFOR tactic over 100 generations

the GAMBIT prototype so that it can generate more
robust and detailed OPFOR tactics. This will
require the expansion of not only our existing tactic
representation but also of our existing tactic
evaluation engine. Currently, OPFOR tactics in
GAMBIT represent a set of teams, their weapon
types, and simple attack and withdrawal conditions
for each team. We in-tend to expand on this
representation to specify more detailed team types
and composite attack and withdrawal conditions,
among other parameters. Similarly, we intend to
expand our evaluation engine to represent a more
complex convoy operations scenario with more
decision points and a more robust representation of
the players and environment. We will also have to
refine our GA design to match this extended
representation, examining biases and investigating
the relationship between the problem space size and
the GA’s capability to generate solutions in
reasonable time.

Finally, we plan to develop OPFOR behavior
models capable of executing GAMBIT tactics and
integrate them within an existing training
simulation. In order to demonstrate the execution
of GAMBIT-generated OPFOR tactics without the
use of a human operator, it will be necessary to
encode behavior models, within our chosen training
simulation environment capable of executing these
tactics. We envision these models to be imbued
with the ability to perform atomic behaviors (such
as IED deployment, retreat, etc.) autonomously, but
consume the contents of tactics generated by
GAMBIT to determine conditions and sequencing.

9. References

Benoit, J. W., C. Elsaesser, et al. (1990). Planning
for Conflict in Multi-Agent Domains.
MTR-90W00149, The MITRE
Corporation.

Eshelman, L.J., Caruana, R.A. and Schaffer, J.D.
(1989). Biases in the crossover landscape.
In the Proceedings of the Third
International Conference on Genetic
Algorithms, pp. 10-19.

Fogel, L. J., V. W. Porto, et al. (1996). An
Intelligently Interactive Non-Rule-Based
Computer Generated Force. Sixth
Conference on Computer Generated
Forces and Behavioral Representation,
Orlando, Florida, University of Central
Florida.

Hayes, C. C. and J. L. Schlabach (1998). FOX-GA:
A Planning Support Tool for Assisting
Military Planners in a Dynamic and
Uncertain Environment. Technical Report
WS-98-02. R. Bergmann and A. Kott,
AAAI Press: 21-26.

Holland, J.H. (1975). Adaptation in Natural and
Artificial Systems. University of Michigan
Press.

Kewley, R. H. and M. J. Embrechts (1998). Fuzzy-
Genetic Decision Optimization for
Positioning of Military Combat Units.
IEEE International Conference on
Systems, Man, and Cyber-netics, La Jolla,
California, IEEE.

Petty, M. D. (2001). Do We Really Want Computer
Generated Forces That Learn? Tenth
Conference on Computer Generated
Forces and Behavioral Representation,
Norfolk, VA, Simulation Interoperability
Standards Organization.

Rajput, S., C. R. Karr, et al. (1996). Learning the
Selection of Reactive Behaviors. Sixth
Conference on Computer Generated
Forces and Behavioral Representation,
Orlando, Florida, University of Central
Florida.

Schultz, A. C. and J. J. Grefenstette (1990).
Improving Tactical Plans with Genetic
Algorithms. 2nd International IEEE
Conference on Tools for Artificial
Intelligence, Washington, D.C., IEEE.

Tyler, J., L. Booker, et al. (1997). Route Planning
for Individual Combatants Using Genetic
Algorithms. Proceedings of the Spring
Simulation Interoperability Workshop,
Orlando, FL, University of Central
Florida.

Wu, A. S. and Garibay, I. (2002). The proportional
genetic algorithm: Gene expression in a
genetic algorithm. Journal of Genetic
Programming and Evolvable Machines,
3:2, 157-192.

Author Biographies

BRIAN S. STENSRUD is a Research Scientist and
behavior developer at Soar Technology and
Principal Investigator on the GAMBIT project.
Brian received his Ph.D. in Computer Engineering
in 2005 from the University of Central Florida. He
also received B.S. degrees in Computer
Engineering, Electrical Engineering, and
Mathematics from the University of Florida (2001),
and an M.S. in Computer Engineering from the
University of Central Florida (2003), where he
studied evolutionary computation under Dr. Wu.
His doctoral dissertation involved the use of a
neural network for learning high-level tactical
behavior.

DOUGLAS A. REECE is a Senior Scientist at
Soar Technology. He has developed agent
architectures, reasoning algorithms, behavior
models, physical models, and environment
representations in individual combatant simulations
for the past 15 years. He was the chief architect of
the individual combatant and civilian models in the
DISAF simulation. His primary research interests
are in developing intelligent agents and modeling
human behavior for simulations and virtual
environments. He has also investigated models of
driving behavior and developed the PHAROS
traffic simulator to support robot driving research.
Dr. Reece has a Ph. D. in Computer Science from
Carnegie Mellon University and B. S. and M.S.
degrees in Electrical Engineering from Case
Western Reserve University.

ANNIE S. WU is an Associate Professor in the
School of Electrical Engineering and Computer
Science and Director of the Evolutionary
Computation Laboratory at the University of
Central Florida (UCF). Before joining UCF, she
was a National Research Council Postdoctoral
Research Associate at the Naval Research
Laboratory. She received a Ph.D. in Computer
Science and Engineering from the University of
Michigan.

	1. Introduction
	2. Training Concept of Operations
	3. Genetic Algorithms
	4. GAMBIT System Architecture
	5. Related Work
	6. Implementation
	7. Results
	8. Future Directions
	9. References
	Author Biographies

