

An Intelligent User Interface for Enhancing Computer Generated Forces

Brian Stensrud
 Glenn Taylor

Soar Technology, Inc.
3600 Green Court, Suite 600

Ann Arbor, MI 48105
734-327-8000

{stensrud, glenn}@soartech.com

Bradley Schricker
Dynetics, Inc.

1002 Explorer Boulevard
Huntsville, Alabama 35806

256-964-4979
brad.schricker@dynetics.com

John Montefusco
Science Applications International Corporation (SAIC)

6723 Odyssey Drive
Huntsville, AL 35806

256-655-2655
john.montefusco@us.army.mil

Jeffrey Maddox
U.S. Army Aviation and Missile Command

Research, Development & Engineering Center
Redstone Arsenal, AL 35898

256-876-7716
jeffrey.a.maddox@us.army.mil

Keywords:
Computer generated forces, intelligent user interfaces, modeling and simulation

ABSTRACT: The DoD widely uses airborne computer generated forces (CGFs) in simulation environments,
however most CGFs are not autonomous or interactive enough to be directed naturally by a human controller. Full
simulation capability requires detailed, doctrinally correct CGFs that can be controlled directly by airspace
managers, such as air traffic controllers, air traffic services, or even ground commanders operating in a combat zone.
Compounding the problem of controlling CGFs is that the military already employs a wide range of CGF behavior
systems with different levels of autonomy, fidelity, and interactivity. This paper describes an ongoing effort to develop
a “Controller’s Assistant” to enhance the apparent capabilities of existing CGFs by introducing a speech-enabled,
intelligent user interface (IUI) between a human controller and a set of CGFs. This Controller’s Assistant allows for a
human controller to use doctrinal airspace control commands to interact with a diverse set of CGFs in a distributed
HLA simulation federation. The IUI translates spoken user commands into HLA commands that direct the CGFs, and
also monitors CGF progress to provide spoken feedback to the controller when doctrinally appropriate.

1. Introduction and Motivation

The DoD Modeling and Simulation community has used
Computer Generated Forces (CGFs) as a way to reduce
manpower requirements for running large-scale exercises.
Most CGF systems are often described as semi-automated
forces, meaning that they require some oversight by
human operators to manage their progress (to ensure that
they are performing their tasks correctly), to manually
task them in sequence, or to dynamically re-task them as
required by the mission. Each CGF system has its own
native interface that the operator must learn and through
which the operator must simultaneously with other
interfaces to monitor and task the CGFs. These CGF
systems can also vary widely in their capabilities – what
tasks they can execute autonomously, and what tasking
they can take during a mission – so the operator must
know what those capabilities are for each CGF he or she

is responsible for controlling. As the number and diversity
of CGFs used in a distributed simulation grows, the
manpower requirements to manage them grows, as well.
In this paper, we describe an approach to reducing the
manpower requirements for managing distributed
simulations by consolidating CGF-specific controls into a
single, uniform interface that is natural to the operations
of the domain.

In particular, we are interested in airspace management,
where the human simulation operator plays the role of an
airspace manager – often an air traffic controller (ATC).
The predominant mode of communication between
human ATCs and human pilots is voice interaction. Even
where most CGFs are capable of dynamic re-tasking, they
tend not to be able engage in dialogue with a human
controller using doctrinal speech. In this paper, we
describe our ongoing development of a speech-based,

intelligent user interface (IUI) we refer to as a
“Controller’s Assistant.” This system allows for a human
controller to use doctrinal airspace control commands to
interact with a diverse range of CGFs in a distributed
simulation environment. The Controller’s Assistant serves
as a mediator between the human controller and a set of
CGFs with varying capabilities.

2. Related work

There have been a few efforts at providing speech
interfaces to simulation environments. SRI’s
CommandTalk system [1] provides a speech interface to
the ModSAF CGF system for creating CGFS and control
measures, tasking entities and changing missions on the
fly. QuickSet [2] is a multi-modal (speech and pen)
interface to ModSAF for setting up and running CGF
simulations. Other CGF systems provide doctrinal speech
interfaces for command and control or teammate
relationships; for example TacAir-Soar [3] is a CGF
behavior model that can interact with a human ATC or
another CGF through a speech interface. In each of these
approaches, a single CGF system was extended to
incorporate speech as a new interface for interacting with
the CGF. The novelty in our approach is in the application
of similar interface technologies across a range of
different CGF systems with the goal of minimally
changing those CGFs to effectively improve their
capabilities.

Soar Technology has recently completed two efforts
directly related to our work on the Controller’s Assistant.
The first is work on an intelligent forces (IFORs)
architecture that can control insurgent opposition forces
(OPFOR) and civilian crowds. This architecture features a
Plan Execution System that matches resources to plan
objectives and develops assignments for CGF entities on a
team and individual level. In this system, the CGF entities
have varying capabilities and so must be tasked
differently to accomplish the user’s goals. The IFOR
system features a graphical plan-editing user interface,
which allows the user/operator to construct plans that
span multiple, diverse CGF types.

The second, AutoATC [4], is another Soar Technology
product that features an intelligent air traffic controller
agent capable of assessing a simulated battle space for
potential conflicts and generating warnings about those
conflicts. This system uses an HLA/DIS interface to tap
into a simulation environment and applies knowledge
about airspace control to monitor for conflicts. While the
Controller’s Assistant is not automating the job of the
controller, it must know enough about airspace control to
understand the controller’s commands and to properly
coordinate the behavior of the underlying CGF entities.

(In fact, we are re-using some of the elements of the
AutoATC system for the Controller’s Assistant.)

3. Design Constraints and Challenges

We have designed the Controller’s Assistant to meet a
number of requirements and constraints highlighted in
this section.

Minimize changes in existing CGFs. An important
requirement for the Controller’s Assistant is that it must
interact with existing CGF platforms with only a minimal
amount of development required on the CGF side. Our
approach is to use existing CGF communication
protocols, as developing an entirely new communications
protocol would require significant development to ensure
that each CGF platform is compatible with that protocol.
Since most existing CGF platforms support
communication across a distributed simulation using HLA
or DIS protocols, we can reduce the amount of changes
required in those CGFs by communicating through them .

Speech Interface. As discussed above, human ATCs
typically interact with air assets through speech, and thus
a requirement of our Controller’s Assistant was that it
must provide a similarly “natural” interface for interacting
with CGF systems. Specifically, all interactions between
the human ATC and each CGF must be through speech.
Note that this is not a general requirement for our
approach. A graphical interface could be suitable for
controlling CGFs as well, but speech is more fitting for
the airspace management domain.

Interaction with Multiple Diverse CGFs. Our most
significant design challenge for the Controller’s Assistant
was the requirement that our system support interactions
with multiple, diverse CGFs. As discussed in the
introduction, there are a wide variety of off-the-shelf CGF
systems in existence, even among Army air assets. Each
of these CGF systems was developed at different
locations, by different people, and (most likely) for
different specific purposes. Consequently, the specific
capabilities of one CGF system may vary greatly from
another even within a very small slice of the domain.
Consider a simple follow-route command, where the
human ATC wishes to instruct a CGF to fly some known,
named route. While most airborne CGFs are capable of
flying routes, they may be tasked in a variety of ways. If
the CGF knows what a route is and what waypoints the
route consists of, it may only be necessary to simply send
the CGF the name of the route. If not, the system might
instead require the sequence of waypoints that constitute
the desired route. It might even be the case that the CGF
system can only handle commands to adjust its
altitude/speed/heading (or possibly as detailed as
yaw/pitch/roll). Here, the command to fly a route breaks

down into a long sequence of these adjustments simply to
fly a route.

To interact with a variety of CGF platforms, therefore, the
Controller’s Assistant must be aware of the tasking
capabilities for each CGF with which it interacts on
behalf of the human controller. The system must then
know how to translate and decompose incoming ATC
messages into a sequence of equivalent CGF commands.

Depending on the complexity of the command from the
human, the sequence of resultant CGF commands and the
timing by which they are issued must also be handled by
the Controller’s Assistant. Consider the following
command:

“Eagle1 this is Tower1, proceed along route
BULLDOG to waypoint ROMEO, then divert
to route ZULU and report when you reach
waypoint SIERRA, over.”

It is quite possible that the CGF representing Eagle1 has
no mechanism for detecting the achievement of a
waypoint and dynamically changing course once that
waypoint has been achieved. In these cases, the burden
falls on the Controller’s Assistant, who must track the
position of Eagle1 as it proceeds along BULLDOG and
detect when it reaches ROMEO. At that point, the system
must then send a follow-up command to the Eagle1 CGF
to change its course to route ZULU.

Finally, the Controller’s Assistant must have the ability to
communicate to the human ATC when the CGF lacks that
capability. For instance, consider again the route-
following command above. This command requires two
responses from the CGF: an immediate acknowledgement
that the command was heard and understood and a report
when the CGF has reached waypoint ZULU. Absent a
CGF capability to issue these utterances, it is the
responsibility of the Controller’s Assistant to (1) know the
required content of the report to the controller, (2) identify
when the report is required, and (3) know what
phraseology to use when generating the speech.

4. Approach: Controller’s Assistant as an
Intelligent User Interface

To address the challenges described in the previous
section, we have framed the Controller’s Assistant as an
intelligent user interface (IUI), effectively a mediator
between the human controller and the CGFs in the
battlespace.

4.1 Controller’s Assistant Concept

To address the challenges described in Section 3, our
Controller’s Assistant IUI was designed to perform three
major functions. The first is to manage dialogue and
interactions with the human ATC. The component of the
IUI in charge of this function is called the Facilitator.
The facilitator is responsible for interpreting all incoming
commands from the ATC and handling all outgoing
speech from the CGF platforms to the ATC (in the cases
where the CGFs are incapable).

The Tasker is responsible for decomposing incoming
ATC commands into appropriate CGF-level commands
and for delegating other internal tasks to the other two
components. This requires knowledge of the capabilities
of each CGF platform, which is specified a priori to the
Controller’s Assistant. If a CGF is instructed to follow a
route but is only capable of following waypoints, for
example, it is the Tasker’s responsibility to decompose
the incoming route name into the correct sequence of
waypoint commands and properly time the issuance of
that sequence.

Finally, the Monitor watches the state of the
environment– particularly the controlled entities – to
provide required situational awareness to the other two
components. For example, in cases where CGFs are
unable to issue their own status reports (e.g., the
achievement of waypoints or routes), it is the Monitor’s
responsibility to track the aircrafts’ states and report
specified milestones to the Tasker or Facilitator.

Each component requires the proper operation of the other
two for the system to operate correctly. The Monitor, as
described above, is responsible for tracking the status of
CGF aircraft. The Tasker uses the results of the Monitor
to determine when to issue follow-up commands. The
Facilitator also uses the output of the Monitor to
determine when to voice messages to the human ATC.
Similarly, the Facilitator parses and hands off all
incoming ATC commands to the Tasker, who in turn
sends requests for information back to the Facilitator
when required.

The specific operation of the Controller’s Assistant and
each component depends heavily on the capabilities of the
CGF platform being controlled. The less a CGF platform
is able to do on its own (in terms of executing ATC
commands), the more responsibility is placed on the
Controller’s Assistant to bridge that gap. However, the
system should identify at run-time when CGFs are
capable of certain behaviors that the Controller’s
Assistant would otherwise handle and avoid overwriting
(or worse, dumbing down) those behaviors.

The desired effect of this interface is to augment the
behaviors of each CGF being controlled so that they all
are equally capable of executing ATC commands, making
them appear identical to the eyes of the human controller.

5. Overall System Design

Figure 1 illustrates the system architecture for our
Controller’s Assistant. The core piece of the IUI, which
houses the Monitor, Facilitator and Tasker components, is
implemented within a single agent using the Soar
cognitive architecture [5]. The human controller sends
speech commands to the system and receives voiced
responses via the SoarSpeak Speech Interface. SoarSpeak
[6] provides speech-to-text (STT) and text-to-speech
(TTS) services to Soar agents using COTS engines, such
as Nuance and AT&T’s NaturalVoices™. The
Controller’s Assistant is connected to each CGF (to which
it is providing services) over HLA. All commands sent to
CGF platforms from the IUI and all reports sent back to
the IUI from the platforms are encapsulated as HLA
interactions. Knowledge about the capabilities of each
CGF is encoded a priori and input to the system at start-
time, where it is loaded into a registry. The IUI matches
incoming commands against this registry to determine
what functions/behaviors are required that the target CGF
does not support.

Figure 1. System Architecture.

5.1 Integration Framework

To date, we have been developing an HLA-based
integration framework for the Controller’s Assistant.
HLA was chosen for initial development over other
distributed simulation methods based in part on how prior
exercises have been run at AMRDEC and in part because
some HLA FOMs provide interactions relevant to
airspace management. Specifically, we are using
MATREX FOM v3.0.

However, the general architecture is ambivalent about the
particular distributed simulation protocols, and the use of
HLA is encapsulated in a plug-in architecture. The system
can support alternative protocols with the development of
additional plug-ins, one for each protocol. Which protocol
to use with a CGF is encoded in the a priori knowledge
about that CGF, and the translation to HLA, or any other
protocol, is simply a step in a pipeline of converting
commands from a representation in the Controller’s
Assistant to a representation suitable for that protocol.

5.3 Computer Generated Forces

For an initial implementation of the Controller’s Assistant
IUI, we are connecting to two different CGF platforms:
Dynetics’ Aviation Mobility Server (AMS) and SAIC’s
Interactive Distributed Engineering Evaluation and
Analysis System (IDEEAS). Both of these systems
support the MATREX version of HLA and have
implementations that subscribe to and publish HLA
interactions relevant to airspace management.

The Aviation Mobility Server (AMS) provides a central
interface to numerous high-fidelity Army aircraft models
for use in distributed simulation experiments. These
models include:

• Micro Air Vehicle (MAV) – a 29-inch ducted fan

UAV (Unmanned Air Vehicle) model
• Tactical UAV (TUAV) – essentially a Shadow 200 – a

six-degrees-of-freedom (6-DOF) model that includes
aerodynamics, mass properties, engine performance,
fuel flow rates, sensor, and embedded flight computer
models

• Generic Rotary Wing (GRW) – a generic
representation of a rotary-wing UAV

• Raven – a high-fidelity RQ-11 model including wind-
tunnel-based aerodynamics, control laws, and inertia
and mass models based on lab measurements

IDEEAS is a physics-based warfighting simulation
designed to solve specific scientific and engineering
problems through constructive and virtual simulation.
IDEEAS uses engineering-level models and predictions to
conduct weapon system analysis based on performance

calculations. IDEEAS is designed for evaluation of
changes in equipment, tactics, weather, terrain, and C4I in
the analysis of current and future weapon systems.
Studies focus on system and subsystem issues and
measures within the context of relevant battlefield
vignettes and environmental conditions. Relevant to this
effort, the IDEEAS simulation includes generic fixed- and
rotary-wing CGF platforms that can be controlled via
HLA commands.

In our current implementation, we are using the following
MATREX FOM interactions with different support from
the two different CGF systems, as seen in Table 1.

Table 1. Used MATREX FOM interactions
Interaction AMS IDEEAS
Move-Aircraft-Along-Route X X
Route-Report (achieving
waypoint)

- X

Entity-Create (at startup) X -

Our goal for the current implementation of the
Controller’s Assistant is to support the following mission
behaviors for both CGF platforms:

• route following
• waypoint following
• hold at waypoint
• establish holding pattern using route
• adjustment of heading
• adjustment of altitude
• verbal acknowledgment of commands
• report current position
• report at waypoint
• divert to alternate route at waypoint

To perform these behaviors, the Controller’s Assistant
must exploit the capabilities of the individual CGFs as
appropriate and fill in gaps elsewhere.

5.3 Controller’s Assistant Operations

The Controller’s Assistant IUI is implemented as a single
Soar agent, where the Facilitator, Monitor, and Tasker
components are modeled as separate persistent roles that
share a single memory. Both intra-component tasking and
communication is handled by reading and writing to this
shared memory.

Typically, interactions between components occur on
handoffs, where one component needs to inform another
about a new task for which it is responsible or about the
status of a completed or in-progress task.

The Facilitator posts ATC commands to the Tasker,
which is responsible for developing a plan for a specific
CGF to accomplish the assigned ATC command. This is
essentially a process of plan refinement, generating plan
execution steps that match the capabilities of the CGF –
or, where the CGF has no relevant capabilities, generating
tasks for the components internal to the Controller’s
Assistant. If a CGF is assigned an execution step, the
Tasker packages that step into a CGF-appropriate network
protocol (here, in HLA MATREX FOM interactions) and
sends it over the wire. If a component within the
Controller’s Assistant is assigned an execution step, the
responsible component will execute that action and
inform the system of its achievement by marking the
execution step as complete.

To illustrate how this is done in practice, we revisit the
sample ATC command introduced in Section 3:

“Eagle1 this is Tower1, proceed along route
BULLDOG to waypoint ROMEO, then divert
to route ZULU and report when you reach
waypoint SIERRA, over.”

The parsed message from the Speech Interface is first read
by the Facilitator, who identifies the nature of the
command and enters it (along with the appropriate
parameters) into shared memory as a sequence of high-
level commands. At this point, the Facilitator does an
initial “sanity check” on the message to make sure, for
example, that BULLDOG is a route in the current set of
known routes, or that waypoint SIERRA is on route
ZULU. If any of the tasking does not make sense, the
Facilitator can immediately ask for clarification.

Once an initial check has been performed, the Tasker
picks up the commands and generates an initial high-level
set of plan steps, which are independent of any CGF
capabilities. For example, here the doctrinal steps are:

1) acknowledge the command (when understood)
2) move along route BULLDOG
3) at waypoint ROMEO, divert to route ZULU
4) when waypoint SIERRA is reached, report

Knowing that Eagle1 has been tasked, and knowing the
capabilities of Eagle1 with respect to each of these steps,
the Tasker can begin to refine this high-level plan into a
plan specifically for Eagle1 and its capabilities. In this
case, the platform driving Eagle1 only supports commands
to fly to individual waypoints. However, execution of the
ATC command as stated requires verbal
acknowledgements, route flying, waypoint tracking, and
reporting waypoints.

The Tasker first creates an execution step to acknowledge
the ATC command and assigns that step to the Facilitator,
who responds:

“Tower1 this is Eagle1, roger, will proceed
along route BULLDOG to waypoint ROMEO,
divert to route ZULU and report at waypoint
SIERRA, over.”

The Tasker then constructs a sequence of waypoints that
comprise the desired composite route, which includes
points from both routes BULLDOG and ZULU. Since
Eagle1 is capable of waypoint following, the Tasker can
achieve equivalent behavior by sending each waypoint as
a separate command.

However, the timing of these commands depends on
when the CGF reaches each intermediate waypoint – the
Tasker cannot simply send the entire batch of waypoint
commands at once. Furthermore, Eagle1 does not support
direct reports to the ATC indicating achievement of
waypoints. Therefore, the Tasker must add an execution
step to monitor the achievement of the waypoint to go
along with each waypoint command. These execution
steps are assigned to the Monitor, who determines when
Eagle1 has reached its next waypoint. Once this is the
case, the Tasker can then send the subsequent waypoint
command to Eagle1.

Finally, the Tasker creates a new execution step to
verbally report the achievement of waypoint SIERRA and
assigns this to the Facilitator. Once the waypoint and the
Monitor’s execution step are achieved, this reporting step
is handled by the Facilitator:

“Tower1 this is Eagle1, achieved waypoint
SIERRA, over.”

6. Future Work and Conclusions

We are in the process of designing an evaluation of the
Controller’s Assistant to be conducted later this year.
There are two hypotheses we would like to test. The first
hypothesis is that providing a single, natural interface for
a simulation operator will allow that operator greater span
of control, lead to fewer errors, and grant more task
efficiency in managing an airspace filled with a diverse
range of CGF entities. Testing this hypothesis will entail
enlisting participants to play the role of an airspace
controller and to interact with a range of CGFs in
representative tasks. In the control condition, the airspace
controller will interact with CGFs using their native
interfaces to control the CGFs in the same tasks. In the
experimental condition, the airspace controller will
interact with CGFs using the Controller’s Assistant as a

uniform interface to all the CGFS. The results would
include a comparison of the control versus experimental
conditions in areas of span of control, controller errors,
and task efficiency. The second hypothesis is that the
Controller’s Assistant can effectively render a range of
CGFs as equivalently capable in the perception of the
controller. That is, regardless of the underlying
capabilities of the CGFs in the experiment, the
Controller’s Assistant can exploit their capabilities and
fill in the gaps where they are incapable. The experiment
would be a kind of Turing Test for CGFs, to see if a
human controller can detect any differences between the
CGFs in the experiment. This would include a mix of
both subjective (from the perspective of the participants)
and objective metrics to measure perceived differences.

It is also conceivable to apply the Controller’s Assistant
concept to other domains besides airspace management.
However, given the ways in which CGFs might be
commanded in other domains and at other levels of
aggregation, the concept might not map directly. ATC is,
doctrinally, very formal, and that plays to the strengths of
speech-based interfaces. However, in an environment
where there is a more informal dialogue between entities
(such as intra-team communication), such an interface
might not be feasible or desirable.

One interesting transition application for our research is in
the UAV domain. As UAV platforms become more
automated, human controllers will interact with them
directly. As with current CGF systems, UAVs will also
have a range of capabilities that airspace controllers will
not want to have to address individually. The Controller’s
Assistant could assume management of the fine-grained
particulars of UAV capabilities, leaving the human
controller to focus on managing the airspace.

7. Acknowledgements

This work is currently being funded under contract #
W911W6-07-C-0052.

8. References

[1] Stent, A., Dowding, J. Gawron, J.M., Bratt, W.E.,

Moore, R. The CommandTalk Spoken Dialogue
System. in Proceedings of the Thirty-Seventh Annual
Meeting of the ACL. 1999. University of Maryland,
College Park, MD: Association for Computational
Linguistics.

[2] Cohen, P., M. Johnston, D. McGee, S. Oviatt, J.
Pittman, I. Smith, L. Chen, and J. Clow. QuickSet:
multimodal interaction for simulation set-up and
control. In Proceedings of the 5th Conf. on Natural

Language Processing. 1997. Washington, DC:
Morgan Kaufman.

[3] Jones, R., J.E. Laird, P.E. Nielsen, K. Coulter, P.
Kenny, and F. Koss. Automated Intelligent Pilots for
Combat Flight Simulation. In Tenth Annual
Conference on Innovative Applications of Artificial
Intelligence. 1999. Menlo Park, CA: AAAI Press.

[4] Taylor, G., B. Stensrud, S. Eitelman, C. Durham, and
E. Harger. Toward Automating Airspace
Management. In Computational Intelligence for
Security and Defense Applications (CISDA). 2007.
Honolulu, HI: IEEE Press.

[5] Wray, R.E. and R.M. Jones, An introduction to Soar
as an agent architecture. In Cognition and Multi-
agent Interaction: From Cognitive Modeling to
Social Simulation. 2005. Cambridge University
Press: Cambridge, UK. p. 53-78.

[6] Nielsen, P.E., F. Koss, G. Taylor, and R.M. Jones.
Communication with Intelligent Agents. In
Proceedings of IITSEC. 2000. Orlando, FL.

Author Biographies

BRIAN STENSRUD, Ph.D., is a Research Scientist at
Soar Technology and lead behavior developer for the
Controller’s Assistant IUI described in the paper. Dr.
Stensrud received his Ph.D. in Computer Engineering
from the University of Central Florida in 2005. He also
holds B.S. degrees in Computer Engineering, Electrical
Engineering, and Mathematics from the University of
Florida. Brian has over seven years experience in the
areas of knowledge-based systems and artificial
intelligence.

GLENN TAYLOR is a Senior Scientist at Soar
Technology and Principal Investigator for the Enhanced
Computer Generated Forces and AutoATC projects. His
research and development activities include agent-based
systems, human behavior modeling, and natural dialogue
systems. He received his B.S. in Computer Science in
1994 and his M.S. in Computer Science and Engineering
in 1996, both from the University of Michigan.

BRADLEY SCHRICKER is a Senior Engineer with
Dynetics, Inc., currently working on numerous projects
pertaining to Unmanned Aerial Vehicle simulation. He
has 10 years of experience in modeling and simulation,
focused in the areas of distributed simulation, discrete
event simulation, and behavior representation. Mr.
Schricker received a B.S. in Computer Science with a
minor in Mathematics from Florida State University in
1998 and an M.S. in Modeling and Simulation from the
University of Central Florida in 2007.

JOHN MONTEFUSCO is a Software Engineer for
Science Applications International Corporation (SAIC) in

Huntsville, AL, working on the IDEEAS simulation in
support of AMRDEC. He graduated in 2005 from the
University of Alabama in Huntsville with a B.S. in
Computer Science. He has worked on a number of
simulation experiments both in constructive and
distributed simulation.

JEFFREY MADDOX is a System Engineer for the US
Army AMRDEC at Redstone Arsenal, Alabama, in the
Advanced Prototyping, Engineering and eXperimentation
(APEX) Lab. He earned a B.S. in Electrical Engineering
and a B.S. in Math and Physics Education, all from
Auburn University.

