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ABSTRACT: The DoD widely uses airborne computer generated forces (CGFs) in simulation environments, 
however most CGFs are not autonomous or interactive enough to be directed naturally by a human controller. Full 
simulation capability requires detailed, doctrinally correct CGFs that can be controlled directly by airspace 
managers, such as air traffic controllers, air traffic services, or even ground commanders operating in a combat zone. 
Compounding the problem of controlling CGFs is that the military already employs a wide range of CGF behavior 
systems with different levels of autonomy, fidelity, and interactivity. This paper describes an ongoing effort to develop 
a “Controller’s Assistant” to enhance the apparent capabilities of existing CGFs by introducing a speech-enabled, 
intelligent user interface (IUI) between a human controller and a set of CGFs. This Controller’s Assistant allows for a 
human controller to use doctrinal airspace control commands to interact with a diverse set of CGFs in a distributed 
HLA simulation federation. The IUI translates spoken user commands into HLA commands that direct the CGFs, and 
also monitors CGF progress to provide spoken feedback to the controller when doctrinally appropriate. 
 
 
1. Introduction and Motivation 
 
The DoD Modeling and Simulation community has used 
Computer Generated Forces (CGFs) as a way to reduce 
manpower requirements for running large-scale exercises. 
Most CGF systems are often described as semi-automated 
forces, meaning that they require some oversight by 
human operators to manage their progress (to ensure that 
they are performing their tasks correctly), to manually 
task them in sequence, or to dynamically re-task them as 
required by the mission. Each CGF system has its own 
native interface that the operator must learn and through 
which the operator must simultaneously with other 
interfaces to monitor and task the CGFs. These CGF 
systems can also vary widely in their capabilities – what 
tasks they can execute autonomously, and what tasking 
they can take during a mission – so the operator must 
know what those capabilities are for each CGF he or she 

is responsible for controlling. As the number and diversity 
of CGFs used in a distributed simulation grows, the 
manpower requirements to manage them grows, as well. 
In this paper, we describe an approach to reducing the 
manpower requirements for managing distributed 
simulations by consolidating CGF-specific controls into a 
single, uniform interface that is natural to the operations 
of the domain. 
 
In particular, we are interested in airspace management, 
where the human simulation operator plays the role of an 
airspace manager – often an air traffic controller (ATC). 
The predominant mode of communication between 
human ATCs and human pilots is voice interaction. Even 
where most CGFs are capable of dynamic re-tasking, they 
tend not to be able engage in dialogue with a human 
controller using doctrinal speech. In this paper, we 
describe our ongoing development of a speech-based, 



intelligent user interface (IUI) we refer to as a 
“Controller’s Assistant.” This system allows for a human 
controller to use doctrinal airspace control commands to 
interact with a diverse range of CGFs in a distributed 
simulation environment. The Controller’s Assistant serves 
as a mediator between the human controller and a set of 
CGFs with varying capabilities. 
 
2. Related work 
 
There have been a few efforts at providing speech 
interfaces to simulation environments. SRI’s 
CommandTalk system [1] provides a speech interface to 
the ModSAF CGF system for creating CGFS and control 
measures, tasking entities and changing missions on the 
fly. QuickSet [2] is a multi-modal (speech and pen) 
interface to ModSAF for setting up and running CGF 
simulations. Other CGF systems provide doctrinal speech 
interfaces for command and control or teammate 
relationships; for example TacAir-Soar [3] is a CGF 
behavior model that can interact with a human ATC or 
another CGF through a speech interface. In each of these 
approaches, a single CGF system was extended to 
incorporate speech as a new interface for interacting with 
the CGF. The novelty in our approach is in the application 
of similar interface technologies across a range of 
different CGF systems with the goal of minimally 
changing those CGFs to effectively improve their 
capabilities. 
 
Soar Technology has recently completed two efforts 
directly related to our work on the Controller’s Assistant. 
The first is work on an intelligent forces (IFORs) 
architecture that can control insurgent opposition forces 
(OPFOR) and civilian crowds. This architecture features a 
Plan Execution System that matches resources to plan 
objectives and develops assignments for CGF entities on a 
team and individual level. In this system, the CGF entities 
have varying capabilities and so must be tasked 
differently to accomplish the user’s goals. The IFOR 
system features a graphical plan-editing user interface, 
which allows the user/operator to construct plans that 
span multiple, diverse CGF types.  
 
The second, AutoATC [4], is another Soar Technology 
product that features an intelligent air traffic controller 
agent capable of assessing a simulated battle space for 
potential conflicts and generating warnings about those 
conflicts. This system uses an HLA/DIS interface to tap 
into a simulation environment and applies knowledge 
about airspace control to monitor for conflicts. While the 
Controller’s Assistant is not automating the job of the 
controller, it must know enough about airspace control to 
understand the controller’s commands and to properly 
coordinate the behavior of the underlying CGF entities.  

(In fact, we are re-using some of the elements of the 
AutoATC system for the Controller’s Assistant.) 
 
3. Design Constraints and Challenges 
 
We have designed the Controller’s Assistant to meet a 
number of requirements and constraints highlighted in 
this section. 
 
Minimize changes in existing CGFs. An important 
requirement for the Controller’s Assistant is that it must 
interact with existing CGF platforms with only a minimal 
amount of development required on the CGF side. Our 
approach is to use existing CGF communication 
protocols, as developing an entirely new communications 
protocol would require significant development to ensure 
that each CGF platform is compatible with that protocol. 
Since most existing CGF platforms support 
communication across a distributed simulation using HLA 
or DIS protocols, we can reduce the amount of changes 
required in those CGFs by communicating through them .  
 
Speech Interface. As discussed above, human ATCs 
typically interact with air assets through speech, and thus 
a requirement of our Controller’s Assistant was that it 
must provide a similarly “natural” interface for interacting 
with CGF systems. Specifically, all interactions between 
the human ATC and each CGF must be through speech. 
Note that this is not a general requirement for our 
approach. A graphical interface could be suitable for 
controlling CGFs as well, but speech is more fitting for 
the airspace management domain.  
 
Interaction with Multiple Diverse CGFs. Our most 
significant design challenge for the Controller’s Assistant 
was the requirement that our system support interactions 
with multiple, diverse CGFs. As discussed in the 
introduction, there are a wide variety of off-the-shelf CGF 
systems in existence, even among Army air assets. Each 
of these CGF systems was developed at different 
locations, by different people, and (most likely) for 
different specific purposes. Consequently, the specific 
capabilities of one CGF system may vary greatly from 
another even within a very small slice of the domain. 
Consider a simple follow-route command, where the 
human ATC wishes to instruct a CGF to fly some known, 
named route. While most airborne CGFs are capable of 
flying routes, they may be tasked in a variety of ways. If 
the CGF knows what a route is and what waypoints the 
route consists of, it may only be necessary to simply send 
the CGF the name of the route. If not, the system might 
instead require the sequence of waypoints that constitute 
the desired route. It might even be the case that the CGF 
system can only handle commands to adjust its 
altitude/speed/heading (or possibly as detailed as 
yaw/pitch/roll). Here, the command to fly a route breaks 



down into a long sequence of these adjustments simply to 
fly a route. 
 
To interact with a variety of CGF platforms, therefore, the 
Controller’s Assistant must be aware of the tasking 
capabilities for each CGF with which it interacts on 
behalf of the human controller. The system must then 
know how to translate and decompose incoming ATC 
messages into a sequence of equivalent CGF commands. 
 
Depending on the complexity of the command from the 
human, the sequence of resultant CGF commands and the 
timing by which they are issued must also be handled by 
the Controller’s Assistant. Consider the following 
command: 
 

“Eagle1 this is Tower1, proceed along route 
BULLDOG to waypoint ROMEO, then divert 
to route ZULU and report when you reach 
waypoint SIERRA, over.” 

 
It is quite possible that the CGF representing Eagle1 has 
no mechanism for detecting the achievement of a 
waypoint and dynamically changing course once that 
waypoint has been achieved. In these cases, the burden 
falls on the Controller’s Assistant, who must track the 
position of Eagle1 as it proceeds along BULLDOG and 
detect when it reaches ROMEO. At that point, the system 
must then send a follow-up command to the Eagle1 CGF 
to change its course to route ZULU. 
 
Finally, the Controller’s Assistant must have the ability to 
communicate to the human ATC when the CGF lacks that 
capability. For instance, consider again the route-
following command above. This command requires two 
responses from the CGF: an immediate acknowledgement 
that the command was heard and understood and a report 
when the CGF has reached waypoint ZULU. Absent a 
CGF capability to issue these utterances, it is the 
responsibility of the Controller’s Assistant to (1) know the 
required content of the report to the controller, (2) identify 
when the report is required, and (3) know what 
phraseology to use when generating the speech. 
 
4. Approach: Controller’s Assistant as an 
Intelligent User Interface 
 
To address the challenges described in the previous 
section, we have framed the Controller’s Assistant as an 
intelligent user interface (IUI), effectively a mediator 
between the human controller and the CGFs in the 
battlespace.  
 

 
4.1 Controller’s Assistant Concept 
 
To address the challenges described in Section 3, our 
Controller’s Assistant IUI was designed to perform three 
major functions. The first is to manage dialogue and 
interactions with the human ATC. The component of the 
IUI in charge of this function is called the Facilitator. 
The facilitator is responsible for interpreting all incoming 
commands from the ATC and handling all outgoing 
speech from the CGF platforms to the ATC (in the cases 
where the CGFs are incapable). 
 
The Tasker is responsible for decomposing incoming 
ATC commands into appropriate CGF-level commands 
and for delegating other internal tasks to the other two 
components. This requires knowledge of the capabilities 
of each CGF platform, which is specified a priori to the 
Controller’s Assistant. If a CGF is instructed to follow a 
route but is only capable of following waypoints, for 
example, it is the Tasker’s responsibility to decompose 
the incoming route name into the correct sequence of 
waypoint commands and properly time the issuance of 
that sequence.  
 
Finally, the Monitor watches the state of the 
environment– particularly the controlled entities – to 
provide required situational awareness to the other two 
components. For example, in cases where CGFs are 
unable to issue their own status reports (e.g., the 
achievement of waypoints or routes), it is the Monitor’s 
responsibility to track the aircrafts’ states and report 
specified milestones to the Tasker or Facilitator. 
 
Each component requires the proper operation of the other 
two for the system to operate correctly.  The Monitor, as 
described above, is responsible for tracking the status of 
CGF aircraft. The Tasker uses the results of the Monitor 
to determine when to issue follow-up commands. The 
Facilitator also uses the output of the Monitor to 
determine when to voice messages to the human ATC. 
Similarly, the Facilitator parses and hands off all 
incoming ATC commands to the Tasker, who in turn 
sends requests for information back to the Facilitator 
when required. 
 
The specific operation of the Controller’s Assistant and 
each component depends heavily on the capabilities of the 
CGF platform being controlled. The less a CGF platform 
is able to do on its own (in terms of executing ATC 
commands), the more responsibility is placed on the 
Controller’s Assistant to bridge that gap. However, the 
system should identify at run-time when CGFs are 
capable of certain behaviors that the Controller’s 
Assistant would otherwise handle and avoid overwriting 
(or worse, dumbing down) those behaviors.  



The desired effect of this interface is to augment the 
behaviors of each CGF being controlled so that they all 
are equally capable of executing ATC commands, making 
them appear identical to the eyes of the human controller. 
 
5. Overall System Design  
 
Figure 1 illustrates the system architecture for our 
Controller’s Assistant. The core piece of the IUI, which 
houses the Monitor, Facilitator and Tasker components, is 
implemented within a single agent using the Soar 
cognitive architecture [5].  The human controller sends 
speech commands to the system and receives voiced 
responses via the SoarSpeak Speech Interface. SoarSpeak 
[6] provides speech-to-text (STT) and text-to-speech 
(TTS) services to Soar agents using COTS engines, such 
as Nuance and AT&T’s NaturalVoices™. The 
Controller’s Assistant is connected to each CGF (to which 
it is providing services) over HLA. All commands sent to 
CGF platforms from the IUI and all reports sent back to 
the IUI from the platforms are encapsulated as HLA 
interactions. Knowledge about the capabilities of each 
CGF is encoded a priori and input to the system at start-
time, where it is loaded into a registry. The IUI matches 
incoming commands against this registry to determine 
what functions/behaviors are required that the target CGF 
does not support. 
 

 
Figure 1. System Architecture. 

 

5.1 Integration Framework 
 
To date, we have been developing an HLA-based 
integration framework for the Controller’s Assistant. 
HLA was chosen for initial development over other 
distributed simulation methods based in part on how prior 
exercises have been run at AMRDEC and in part because 
some HLA FOMs provide interactions relevant to 
airspace management. Specifically, we are using 
MATREX FOM v3.0.  
 
However, the general architecture is ambivalent about the 
particular distributed simulation protocols, and the use of 
HLA is encapsulated in a plug-in architecture. The system 
can support alternative protocols with the development of 
additional plug-ins, one for each protocol. Which protocol 
to use with a CGF is encoded in the a priori knowledge 
about that CGF, and the translation to HLA, or any other 
protocol, is simply a step in a pipeline of converting 
commands from a representation in the Controller’s 
Assistant to a representation suitable for that protocol. 
 
5.3 Computer Generated Forces 
 
For an initial implementation of the Controller’s Assistant 
IUI, we are connecting to two different CGF platforms: 
Dynetics’ Aviation Mobility Server (AMS) and SAIC’s 
Interactive Distributed Engineering Evaluation and 
Analysis System (IDEEAS). Both of these systems 
support the MATREX version of HLA and have 
implementations that subscribe to and publish HLA 
interactions relevant to airspace management. 
 
The Aviation Mobility Server (AMS) provides a central 
interface to numerous high-fidelity Army aircraft models 
for use in distributed simulation experiments. These 
models include: 
 
• Micro Air Vehicle (MAV) – a 29-inch ducted fan 

UAV (Unmanned Air Vehicle) model 
• Tactical UAV (TUAV) – essentially a Shadow 200 – a 

six-degrees-of-freedom (6-DOF) model that includes 
aerodynamics, mass properties, engine performance, 
fuel flow rates, sensor, and embedded flight computer 
models 

• Generic Rotary Wing (GRW) – a generic 
representation of a rotary-wing UAV 

• Raven – a high-fidelity RQ-11 model including wind-
tunnel-based aerodynamics, control laws, and inertia 
and mass models based on lab measurements 

 
IDEEAS is a physics-based warfighting simulation 
designed to solve specific scientific and engineering 
problems through constructive and virtual simulation. 
IDEEAS uses engineering-level models and predictions to 
conduct weapon system analysis based on performance 



calculations. IDEEAS is designed for evaluation of 
changes in equipment, tactics, weather, terrain, and C4I in 
the analysis of current and future weapon systems. 
Studies focus on system and subsystem issues and 
measures within the context of relevant battlefield 
vignettes and environmental conditions. Relevant to this 
effort, the IDEEAS simulation includes generic fixed- and 
rotary-wing CGF platforms that can be controlled via 
HLA commands. 
 
In our current implementation, we are using the following 
MATREX FOM interactions with different support from 
the two different CGF systems, as seen in Table 1. 
 

Table 1. Used MATREX FOM interactions 
Interaction AMS IDEEAS 
Move-Aircraft-Along-Route X X 
Route-Report (achieving 
waypoint) 

- X 

Entity-Create (at startup) X - 
 
Our goal for the current implementation of the 
Controller’s Assistant is to support the following mission 
behaviors for both CGF platforms: 
 

• route following 
• waypoint following 
• hold at waypoint 
• establish holding pattern using route 
• adjustment of heading 
• adjustment of altitude 
• verbal acknowledgment of commands 
• report current position 
• report at waypoint 
• divert to alternate route at waypoint 

 
To perform these behaviors, the Controller’s Assistant 
must exploit the capabilities of the individual CGFs as 
appropriate and fill in gaps elsewhere. 
 
5.3 Controller’s Assistant Operations 
 
The Controller’s Assistant IUI is implemented as a single 
Soar agent, where the Facilitator, Monitor, and Tasker 
components are modeled as separate persistent roles that 
share a single memory. Both intra-component tasking and 
communication is handled by reading and writing to this 
shared memory.  
 
Typically, interactions between components occur on 
handoffs, where one component needs to inform another 
about a new task for which it is responsible or about the 
status of a completed or in-progress task. 
 

The Facilitator posts ATC commands to the Tasker, 
which is responsible for developing a plan for a specific 
CGF to accomplish the assigned ATC command. This is 
essentially a process of plan refinement, generating plan 
execution steps that match the capabilities of the CGF – 
or, where the CGF has no relevant capabilities, generating 
tasks for the components internal to the Controller’s 
Assistant. If a CGF is assigned an execution step, the 
Tasker packages that step into a CGF-appropriate network 
protocol (here, in HLA MATREX FOM interactions) and 
sends it over the wire. If a component within the 
Controller’s Assistant is assigned an execution step, the 
responsible component will execute that action and 
inform the system of its achievement by marking the 
execution step as complete. 
 
To illustrate how this is done in practice, we revisit the 
sample ATC command introduced in Section 3: 
 

“Eagle1 this is Tower1, proceed along route 
BULLDOG to waypoint ROMEO, then divert 
to route ZULU and report when you reach 
waypoint SIERRA, over.” 

 
The parsed message from the Speech Interface is first read 
by the Facilitator, who identifies the nature of the 
command and enters it (along with the appropriate 
parameters) into shared memory as a sequence of high-
level commands. At this point, the Facilitator does an 
initial “sanity check” on the message to make sure, for 
example, that BULLDOG is a route in the current set of 
known routes, or that waypoint SIERRA is on route 
ZULU. If any of the tasking does not make sense, the 
Facilitator can immediately ask for clarification. 
 
Once an initial check has been performed, the Tasker 
picks up the commands and generates an initial high-level 
set of plan steps, which are independent of any CGF 
capabilities. For example, here the doctrinal steps are: 
 

1) acknowledge the command (when understood) 
2) move along route BULLDOG 
3) at waypoint ROMEO, divert to route ZULU 
4) when waypoint SIERRA is reached, report 

 
Knowing that Eagle1 has been tasked, and knowing the 
capabilities of Eagle1 with respect to each of these steps, 
the Tasker can begin to refine this high-level plan into a 
plan specifically for Eagle1 and its capabilities. In this 
case, the platform driving Eagle1 only supports commands 
to fly to individual waypoints. However, execution of the 
ATC command as stated requires verbal 
acknowledgements, route flying, waypoint tracking, and 
reporting waypoints. 
 



The Tasker first creates an execution step to acknowledge 
the ATC command and assigns that step to the Facilitator, 
who responds: 
 

“Tower1 this is Eagle1, roger, will proceed 
along route BULLDOG to waypoint ROMEO, 
divert to route ZULU and report at waypoint 
SIERRA, over.” 

 
The Tasker then constructs a sequence of waypoints that 
comprise the desired composite route, which includes 
points from both routes BULLDOG and ZULU. Since 
Eagle1 is capable of waypoint following, the Tasker can 
achieve equivalent behavior by sending each waypoint as 
a separate command.  
 
However, the timing of these commands depends on 
when the CGF reaches each intermediate waypoint – the 
Tasker cannot simply send the entire batch of waypoint 
commands at once. Furthermore, Eagle1 does not support 
direct reports to the ATC indicating achievement of 
waypoints. Therefore, the Tasker must add an execution 
step to monitor the achievement of the waypoint to go 
along with each waypoint command. These execution 
steps are assigned to the Monitor, who determines when 
Eagle1 has reached its next waypoint. Once this is the 
case, the Tasker can then send the subsequent waypoint 
command to Eagle1. 
 
Finally, the Tasker creates a new execution step to 
verbally report the achievement of waypoint SIERRA and 
assigns this to the Facilitator. Once the waypoint and the 
Monitor’s execution step are achieved, this reporting step 
is handled by the Facilitator: 
 

“Tower1 this is Eagle1, achieved waypoint 
SIERRA, over.” 

 
6. Future Work and Conclusions 
 
We are in the process of designing an evaluation of the 
Controller’s Assistant to be conducted later this year. 
There are two hypotheses we would like to test. The first 
hypothesis is that providing a single, natural interface for 
a simulation operator will allow that operator greater span 
of control, lead to fewer errors, and grant more task 
efficiency in managing an airspace filled with a diverse 
range of CGF entities. Testing this hypothesis will entail 
enlisting participants to play the role of an airspace 
controller and to interact with a range of CGFs in 
representative tasks. In the control condition, the airspace 
controller will interact with CGFs using their native 
interfaces to control the CGFs in the same tasks. In the 
experimental condition, the airspace controller will 
interact with CGFs using the Controller’s Assistant as a 

uniform interface to all the CGFS. The results would 
include a comparison of the control versus experimental 
conditions in areas of span of control, controller errors, 
and task efficiency. The second hypothesis is that the 
Controller’s Assistant can effectively render a range of 
CGFs as equivalently capable in the perception of the 
controller. That is, regardless of the underlying 
capabilities of the CGFs in the experiment, the 
Controller’s Assistant can exploit their capabilities and 
fill in the gaps where they are incapable. The experiment 
would be a kind of Turing Test for CGFs, to see if a 
human controller can detect any differences between the 
CGFs in the experiment. This would include a mix of 
both subjective (from the perspective of the participants) 
and objective metrics to measure perceived differences. 
 
It is also conceivable to apply the Controller’s Assistant 
concept to other domains besides airspace management. 
However, given the ways in which CGFs might be 
commanded in other domains and at other levels of 
aggregation, the concept might not map directly. ATC is, 
doctrinally, very formal, and that plays to the strengths of 
speech-based interfaces. However, in an environment 
where there is a more informal dialogue between entities 
(such as intra-team communication), such an interface 
might not be feasible or desirable. 
 
One interesting transition application for our research is in 
the UAV domain. As UAV platforms become more 
automated, human controllers will interact with them 
directly. As with current CGF systems, UAVs will also 
have a range of capabilities that airspace controllers will 
not want to have to address individually. The Controller’s 
Assistant could assume management of the fine-grained 
particulars of UAV capabilities, leaving the human 
controller to focus on managing the airspace. 
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