
Playing 20 Questions in Social Science –
toward “Social Science Architectures” ?

Glenn Taylor, Robert E. Wray, PhD, Randolph M. Jones, PhD

Soar Technology, Inc. 3600 Green Court, Suite 600
Ann Arbor, MI 48105

{glenn,wray,rjones}@soartech.com

Abstract. One result of the “cognitive revolution” was the development of
cognitive architectures that incorporate cognitive theories into a computational
form that can be used to inform and constrain cognitive model development.
This paper attempts to draw lessons learned from cognitive architecture
development as a potential roadmap for how to develop theory-based
computational architectures for computational social science research.

Keywords: computational social science, cognitive architecture

1 Introduction

In the heyday of the “cognitive revolution,” Allen Newell asserted that “You Can’t
Play 20 Questions with Nature and Win” [1] – that asking individual questions about
individual cognitive phenomena could not lead to the formation of a “unified theory
of cognition” – one that integrates a range of theories in a coherent, consistent
manner, and which can be used to explain within that integrated theory the full range
of cognitive phenomena. One result of this mindset, as combined with concepts from
artificial intelligence, was the development of the concept of computational cognitive
architecture that incorporates integrated cognitive theories into a computational form
that can be used to inform and constrain theory-based cognitive model development.

In computational social science, it seems there is a similar kind of junction, in
which there are many computational models focused on individual theories and
phenomena in social science – e.g., innovation diffusion theory [2],. There are also a
number of toolkits for developing computational social science models (e.g., iThink,
RePast). However, there does not seem to be the equivalent to computational
cognitive architecture in computational social science. That is, there are no modeling
toolkits that implement an integrated theory to account for the full range social
behavior, nor do the computational toolkits that exist in social science help build
theory-based models.

This paper describes some of the concepts in computational cognitive modeling
and cognitive architecture, in an effort to chart a parallel path between the
development of cognitive architectures and a possibly equivalent concept in
computational social science.

Appears in proceedings of World
Congress on Social Simulation (2008)

2 Defining the Landscape of Computational Modeling

To begin, we want to define some terms first to help ground the discussion. We
approach these terms specifically from a cognitive modeling perspective (our
background). These definitions are not meant to be controversial, but in some cases,
we make fine distinctions to draw direction connections later when talking about
computational social science modeling.

Theory – an explanation of some phenomena that is testable/falsifiable, makes
predictions, etc.

Model – an instantiation of a theory about one or more phenomena observed in a
particular system under study. A model may (and almost probably does) make
simplifying assumptions, and in doing so may become an abstraction.

Modeling Framework – a set of concepts about some phenomena (“conceptual
framework”), and sometimes a set of tools or toolkits (“computational framework”),
that support a range of models with those concepts. For example, rules-based
languages like OPS-5 or JESS can be considered computational frameworks that
provide some primitives building cognitive models.

Computational Cognitive Model – a model of human cognition, in computational
form, typically focused on a particular cognitive competency or phenomena, such as
learning; the computational model implements a theory of how the cognitive
competency works under some assumptions. The model can often be used to make
predictions for a particular task – e.g., how long it will take humans to perform a math
problem. Computational models will often be built using a computational framework
– e.g., a particular language that has relevant constructs, such as rules.

Computational Cognitive Modeling Architecture – a computational framework
that explicitly incorporates theories of human cognition, and which allows for
building cognitive models based on those theories, especially to the extent that a
single architecture can be used to build multiple models consistent with the underlying
theories. Includes theorized cognitive representations and processes necessary for
cognition – these become the fixed constructs available to modelers which are used to
guide theory-based model development. Example Cognitive Architectures include
Soar [3] and ACT-R [4]. In the rest of this paper, when we use the shorthand term
cognitive architecture, we will typically mean computational cognitive modeling
architecture.

In the next section, we will expand on the concept of cognitive architecture, and then
begin to draw explicit ties to computational social science.

3 Cognitive Architecture

Cognitive architecture [5], from a non-computational “conceptual framework”
perspective, is an attempt to describe the structures and processes of cognition as a
whole. [6] fits this within the concept of a unified theory of cognition (UTC) – instead
of accounting for narrow, individual phenomena in cognition (e.g., Fitts Law [7]), a
UTC accounts for the full range of cognitive capabilities: problem-solving, learning,
emotion, etc. The idea of an integrated cognitive architecture, incorporating all the
necessary functional components of cognition, falls naturally out of the idea of a
UTC. Essentially, a single cognitive architecture should account for all cognitive
phenomena. Functional components of a cognitive architecture are meant to be
analogous to components in the “architecture of the mind” (not the brain necessarily,
but the mind). Notionally, a cognitive architecture might consist of a short-term
memory, a working memory, sensory systems, etc. (of course, depending on the
integrated cognitive theory on which the architecture is based). However, regardless
the particular functional modules of the architecture, a hallmark of cognitive
architecture in general is the specification of fixed constructs (namely, representations
and processes over those representations) that are constant across all cognitive tasks.
For example, a fixed representation might be rules for long-term memory; a fixed
process might be the algorithms for memory retrieval – these are constants across all
models built within the architecture. These constructs are often explicitly supported in
a programming language for building model. (Indeed, many cognitive architectures
provide their own programming language – e.g., Soar, ACT-R – to further enable and
encourage theory-based model development.). The things that are invariant – for
example, the particular knowledge about how to perform a task – would vary across
tasks. These variants effectively become the data over which the architecture operates.

There is a range of cognitive architectures, each incorporating different theoretical
constructs, and therefore each providing a different set of fixed computational
constructs that can be used to build cognitive models. However, cognitive
architectures almost by definition are meant to provide an integrated, theory-based
framework for explaining human cognition. The fixed representations and processes
become implementations of the theory, and furthermore impose constraints on model
building – cognitive models built within a cognitive architecture must abide by those
fixed constructs to be considered theory-based. This is not to say that cognitive
architectures are all complete – they are in many ways idealizations of a complete
theory of cognition. But they are also a sandbox to allow for theorists to try to
integrate theories of cognition into a form that can be experimented with, that can be
used to build models to generate predictions, etc. Cognitive architectures have in
many ways enabled further theorizing about the nature of cognition by providing
evidence for what functional areas must exist in the mind to be able to work as an
integrated whole.

These core concepts of accounting for all phenomena; fixed constructs;
constraints; and programming language will be revisited later in the context of
computational social science.

3 Relating to Computational Social Science

Where cognitive science is about understanding and explaining observable
phenomena in cognition, social science is focused on the observable phenomena of
social systems. Obviously, social science is a very wide, multi-disciplinary field.
Sociology might focus on group action; Political science might focus on voting
patterns under some conditions; anthropology might focus on how culture changes
over time; etc. Many of these fields might study the decentralized nature of behavior,
and the “emergent” qualities of behavior from the interactions of multiple actors over
time. These phenomena are often explained in the form of theories that can be used to
make predictions about those social systems under different conditions.

Like cognitive science models, many social science models start with some
phenomenon and a theory about that phenomenon. The model is an implementation of
some theories in some form which is meant to generate predictions that match the
original observed phenomenon in some way. By extension, computational social
science is concerned with using a range of computational methods for building
computer-based models that can be experimented with, used for prediction, etc.,
possibly leading to the refinement of existing theories or development new theories.
There are thousands of computational social science models, typically focused on a
single observable phenomenon in social science -- for example, the El Farol problem.
These computational models as implementations of a theory make predictions by
generating output that can be compared against data.

As with cognitive frameworks, there are analogs in social science. For example,
systems dynamics modeling is a “conceptual framework” with primitives of stocks
and flows (among other things) that allow models to be built using certain terms, and
there exists computational analogs such as iThink that can be used to build
computational systems dynamics models. Agent-based modeling is a “conceptual
framework” that allows models to be built using different terms, and there are tools or
toolkits for building computational agent-based models. (When talking about
computational frameworks like iThink or RePast, we will use the shorthand term
“toolkit.”)

Very general computational toolkits exist for building social science models, for
example MSExcel™ or Mathematica™. However, the primitives in these “toolkits” –
that is, all of mathematics – are not usually very helpful in focusing a social scientist
on the modeling problem at hand. One goal of a framework (conceptual or
computational) is that the primitives offered by the framework match closely to the
concepts used by the theorists. If a theorist casts their social phenomena in a certain
way (e.g., agent-based), he or she might be drawn to these different kinds of modeling
paradigms or toolkits. The closer these primitives in the framework are to how the
end-users think about the problem, the easier it will be for those users to build models.
Systems Dynamics modeling tools like iThink or STELLA offer primitives in the
realm of systems dynamics – e.g., stocks and flows. Agent-based modeling is another
paradigm for describing social science phenomena. A number of agent-based
modeling frameworks exist: RePast, NetLogo, MASON, Ascape, StarLogo, Artisoc,
etc. This means also that there are different abstractions for different kinds of users
and problems. One role of a modeling framework is to define the “right” level of
abstraction to enable models to be built easily, encapsulating many of the details of

how things work in such a way that modelers can focus on their specific modeling
problem.

Focusing on agent-based modeling frameworks, these tend generally have two
kinds of primitives: agents and interactions. These concepts are fairly broadly defined
in these different frameworks. An agent can be any number of things, with any
number of capacities. Often an agent is simply an abstract object (in the object
oriented programming sense) that must be refined and instantiated by a modeler by
writing, for example, Java code. Most agents perceive objects or interactions in their
environment, and take some action in the environment, but these exact actions and
perceptions often differ in every framework and every model. The conceptualization
of an interaction can also vary widely, which may include simply observing one’s
neighbor, to (intentionally or unintentionally) leaving some signal in the environment,
deliberately voting, etc. Interactions may change agent behavior, which may in turn
change the interactions. This feedback loop is one of the hallmarks of agent-based
models, and, indeed, social systems.

Overall, the “theory” that social systems consist of agents and interactions among
those agents is not a terribly strong theory, in that by itself it cannot make strong
predictions about those social systems. In this way, we claim that most if not all of the
agent-based modeling frameworks described above are theory free. This is not a
criticism as it might sound – that they are theory-free allows social science theorists
working in an “agent-based” paradigm to build models that are themselves a rendition
of a theory about a social system. However, one consequence of the generality of
most of these frameworks is that the primitives they define are underconstraining.
That is, the primitives in these frameworks do not help inform a social scientist
modeler as to how to construct a theory-based model – except in that the model will
have agents and interactions of some kind. It this lacking that leads us to think about
the possibility for theory-based frameworks – computational social science
architectures – that can help social scientists develop theory-based models.

4 Toward a Computational Social Science Architecture

Overall computational cognitive architectures have had a positive impact on
cognitive science, in terms of helping to push the idea of integrated conceptual
models, helping to understand what functional areas are required for integrated
cognition, and even practical matters of making the building of computational
cognitive models easier. Therefore, it seems natural to extend this metaphor to social
science.

What might a computational social science architecture (CSSA) look like? Here
we describe a range of possible characteristics, inspired by the discussion of cognitive
architectures above, as they might apply to a CSSA. These are only a few such
characteristics.

4.1 One architecture, multiple models

One idea behind cognitive architecture is to help enable the unification of multiple
theories of cognition into a coherent, consistent whole that allows for the modeling of
a range of cognitive phenomena within a single complex task. For example – not just
a cognitive model of learning items in a list, or recall of items from that list, but
learning and recalling while performing an algebra task. The complex task requires a
range of cognitive capabilities, and a model of that task in a cognitive architecture
exhibits all those capabilities, making relevant predictions along the way of the
system as a whole.

Similarly, a social system does not simply exhibit voting behavior alone, nor does
not simply demonstrate the emergence of crowd behavior for visiting a bar, but
instead the complex “task” of a real society encompasses all of these things over a
long period of time, and these sub-tasks themselves interact in potentially interesting
ways. An integrated social theory should capture these simultaneously, and a
computational framework should incorporate the constructs related to the integrated
theory to enable building social science models that exhibit a range of phenomena.

4.2 Fixed Representations and Processes

One distinguishing characteristic of cognitive architecture is in the definition of
fixed representations and processes that embody the theories in the architecture, and
which constrain model development to be consistent with the theories. Some similar
concepts appear in existing social science modeling frameworks, as mentioned earlier.
For example, agent-based modeling toolkits define agents and interactions as the
primitive constructs. However, in these existing frameworks, these concepts do not
really constrain model development because they are so generically defined. A CSSA
that is grounded in theory would likely constrain the characteristics of those agent
objects – what they can perceive, how they perceive, how they process information
(not unlike Cognitive Architectures, perhaps). It would also constrain how they can
interact with other agents and their environments. Further, a CSSA would rigorously
define the nature of those interactions, what constitutes an interaction, etc. This is not
to say that there should be a fixed “emergence” construct in a CSSA (this would
perhaps contradict the non-centralized notion of emergence in the first place), but
where theories of emergent behavior make strong predictions, the constraints
informed those theories should be somehow incorporated into the definitions of how
interaction takes place.

4.2 Programming Language Constructs

Often, cognitive architectures come with a programming language that contains the
primitives represented in the theory as first-class objects or methods in the language –
e.g., goals, operators, plans, problem solving methods, etc. This tends to be the case
in existing agent-based modeling frameworks, where there is an agent object, for
example, that might have some characteristics (e.g., unique identifier, location) and

methods related to its environment (e.g., move) or related to interactions with other
agents (e.g., inform, vote). However, where these characteristics or methods are based
in theory, it is up to the social scientist to define what they are and write them from
scratch into each model. An appropriate architecture would define a reusable set of
these primitives at the right level of detail for building a large class of models, and
make these part of the language – both to ease the process of building models, but
also to encourage the development of theory-based models by abiding by the
constraints naturally in the language. If the language is too general or otherwise lacks
the right kinds of primitives, modelers must invent their own primitives, and by doing
so may are not necessarily constrained by the theory embedded in the architecture.

5 Conclusions

In this paper, we have described computational cognitive architectures and have
attempted to draw parallels to computational social science. In this, we have
suggested the possibility of developing a theory-based computational social science
architecture, and have suggested some characteristics of such an architecture as
inspired by cognitive architectures.

Given the huge space that is social science, it is perhaps unlikely that there is a
single unifying computational social science architecture. However, maybe within a
single discipline or range of theories, this is more feasible in the short term. Where
there is coalescence of micro theories into unified theories, this is where
computational social science architecture might be possible, and which might make it
easier for social scientists to develop theory-based computational models and
experiments that can more easily be shared, compared, repeated, validated, etc.
Where cognitive architecture has helped advance cognitive science by enabling the
development of tangible models that help make predictions about human cognition, as
well as advancing and refining theories of human cognition, perhaps the same can
happen for the social sciences.

References

1. Newell, A. You can’t play 20 questions with nature and win. in Visual Information
Processing. 1973: Academic Press.

2. Rogers, E., Diffusion of Innovations. 5 ed. 2003: Free Press.
3. Laird, J.E., A. Newell, and P.S. Rosenbloom, Soar: An architecture for general

intelligence. Artificial Intelligence, 1987. 33(3): p. 1-64.
4. Anderson, J. and C. Lebiere, The Atomic Components of Thought. 1998: Lawrence

Erlbaum.
5. Pylylshyn, Z., The Role of Cognitive Architecture in Theories of Cognition, in

Architectures for Intelligence, K. Van Lehn, Editor. 1991, Lawrence Erlbaum
Associates: Hillsdale, NJ.

6. Newell, A., Unified Theories of Cognition. 1990, Cambridge, MA: Harvard
University Press.

7. Fitts, P.M. and R.E. Jones, Analysis of Factors Contributing to 460 "Pilot-Error"
Experiences in Operating Aircraft Controls. 1947, Aero Medical Laboratory, Air
Materiel Command, Wright Patterson Air Force Base: Dayton, Ohio.

