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Abstract—This paper explores the issues faced in creating a sys-4
tem that can learn tactical human behavior merely by observing5
a human perform the behavior in a simulation. More specifically,6
this paper describes a technique based on fuzzy ARTMAP (FAM)7
neural networks to discover the criteria that cause a transition8
between contexts during a strategic game simulation. The ap-9
proach depends on existing context templates that can identify10
the high-level action of the human, given a description of the11
situation along with his action. The learning task then becomes the12
identification and representation of the context sequence executed13
by the human. In this paper, we present the FAM/Template-based14
Interpretation Learning Engine (FAMTILE). This system seeks to15
achieve this learning task by constructing rules that govern the16
context transitions made by the human. To evaluate FAMTILE, six17
test scenarios were developed to achieve three distinct evaluation18
goals: 1) to assess the learning capabilities of FAM; 2) to evaluate19
the ability of FAMTILE to correctly predict human and context20
selections, given an observation; and 3) more fundamentally, to21
create a model of the human’s behavior that can perform the22
high-level task at a comparable level of proficiency.23

Index Terms—Context-Based Reasoning (CxBR), fuzzy24
ARTMAP (FAM), learning from observation, neural network,25
poker, template-based interpretation (TBI).26

I. INTRODUCTION27

L EARNING from observation of human behavior is a skill28

well mastered by human beings, even as young children.29

Although not all tasks can be fully learned by merely observing30

others perform (e.g., riding a bicycle and hitting a baseball),31

many tasks are, in fact, able to be learned by humans through32

observation (e.g., driving an automobile). In fact, it can be ar-33

gued that learning from observation shares some commonalities34

with experiential learning, in that the observer learns from the35

experience of others. This provides an interesting opportunity36

for the training of agents to perform humanlike tasks.37

There is and has been significant activity in the area of learn-38

ing from observation in the last several years. We cover that in39

Section II. This paper describes an investigation into learning40

the criteria for context transitions by observing a player in a41

computerized game of strategy. To better understand what we42

mean by a context and a context transition, we first present a43

brief description of Context-Based Reasoning (CxBR), which44

is an essential component of our approach.45
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A. CxBR and Tactical Missions 46

Webster’s dictionary defines context as “. . . the whole situa- 47

tion, background or environment relevant to some happening or 48

personality” [1]. CxBR, in turn, defines context as previously 49

mentioned, plus the knowledge and functionality for a context- 50

based agent to be able to appropriately act when in this context. 51

In other words, it contains what the agent needs in order to 52

know what to do when in this context. If an agent can identify 53

the context in which it finds itself, it needs only to use the 54

knowledge and functionality defined for that context in order 55

to properly “navigate” it (see [2] for a more detailed discussion 56

on CxBR). 57

CxBR contexts, in some ways, resemble hierarchical finite- 58

state machines. Indeed, CxBR contexts can be effectively rep- 59

resented by such structures, with contexts roughly equating 60

to states. However, the essential distinction is that contexts 61

in CxBR encompass a grouping of knowledge that is natural 62

(for humans) to a given situation—in effect, anything and 63

everything the agent might need to know while in that context. 64

This knowledge includes functional knowledge (e.g., how to 65

do something) as well as transitional knowledge, which allows 66

the agent to select the most applicable context in a constantly 67

changing environment. 68

CxBR is an organizational concept and not a language. 69

Contextual knowledge can take the form of one or more 70

functions, rules, neural networks, and simulations, or some 71

form of declarative knowledge. This can drastically prune the 72

search space when looking for relevant operators to address 73

a problem. Grouping knowledge in this fashion can also help 74

in identifying the CxBR context in which the agent finds itself 75

as the transition criteria are defined within each CxBR context 76

(hereinafter called contexts). Traditionally, the contexts have 77

been authored by a knowledge engineer (KE). However, recent 78

research has sought to semiautomatically or automatically build 79

these contexts with the help of knowledge acquisition tools [3] 80

or via machine learning [4], [5]. The work described in this 81

paper is a further effort in the latter approach. 82

Nevertheless, as the situation experienced by the agent 83

evolves through the natural course of the agent’s activity 84

(a game, a mission, a task, etc.), a new set of knowledge may 85

need to be brought to bear (“activated”) to successfully define 86

and control the behavior of the agent in this new situation. 87

Therefore, recognizing what causes a situation in the environ- 88

ment to change and react to that change by activating the newly 89

appropriate context is not only important but also essential if 90

a system is to correctly perform a behavior. We refer to the 91

criteria that trigger context transitions as the context transition 92

criteria. Learning these transition criteria through observation 93

of human performance is the specific objective of the work 94

described in this paper. 95
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We limit our work to problems that involve tactical behav-96

iors. This includes military missions but could also involve97

team or individual games and other nonconflictive situations98

where tactical behavior is employed (e.g., driving a car to the99

airport). The term tactical behavior, which is often reserved100

for behaviors involving military operations, is defined here to101

denote behaviors with four characteristics.102

1) Having a well-defined goal or mission.103

2) Being characterized by planning and/or maneuvering.104

3) Not being well defined as to their execution sequence.105

Thus, their characteristics may vary greatly across indi-106

viduals.107

4) Needing to intelligently react to unforeseen events or to108

the actions of others.109

B. High-Level Behaviors110

The overall behaviors learned by our system are considered111

to be high-level behaviors. The precise definition of a high-level112

behavior is usually omitted in the relevant literature in spite of113

the fact that their implementation is a primary focus of the work114

described therein. Jones et al. [6] and Jones and Laird [7] refer115

to high-level behavior when describing the TacAir-Soar system116

but never explicitly define the term. Likewise, the work reported117

by Patterson et al. [8] describes a method for learning high-level118

behavior by examining low-level sensors but also stops short119

of providing a definition of high-level behavior. A common120

thread found in all of the literature, however, is that the presence121

of subbehaviors composes the high-level behavior described.122

In the paper by Jones et al. [6], the behavior of piloting a123

fixed-wing aircraft is described in terms of the composition124

of its lower level functionality, such as communication and125

maneuvering the plane.126

In the context of this research, we define high-level behaviors127

as behaviors that can be represented by a sequence of simpler128

identifiable subbehaviors known as low-level behaviors. A low-129

level behavior is considered to be atomic if it cannot be decom-130

posed any further. Otherwise, between high-level behaviors and131

atomic behaviors at each extreme, there can be several layers132

of varying levels of behaviors. For example, in the domain of133

automobile driving, a high-level behavior could be “driving an134

automobile.” Conversely, “pressing down on the accelerator”135

is considered an atomic behavior. In between, there are such136

behaviors as “managing traffic lights,” “driving in urban areas”137

(which could indeed include managing traffic lights), “passing,”138

and “turning left.”139

If it is assumed that each low-level behavior (atomic or not)140

can be modeled and identified a priori, learning is then the141

process of identifying and remembering the cues (environmen-142

tal or otherwise) that trigger the transitions between low-level143

behaviors. The sequence of these low-level behaviors then com-144

poses the high-level behaviors executed by the observed human.145

We are, furthermore, interested in a class of low-level be-146

haviors that 1) can be identified during observation; 2) exist147

a priori and need not be learned (only recognized); 3) no two148

such behaviors can be executed at the same time; and 4) are149

known to be characteristic of the higher level behavior that we150

do wish to learn to compose.151

Behavior Bi, therefore, is learned by determining how152

our observed human decides to make use of subbehaviors153

Fig. 1. Learning behaviors by mapping relationships between known
subbehaviors.

b0, b1, . . . , bk that compose Bi. Thus, behavior Bi is con- 154

sidered the high-level behavior. The predefined contexts that 155

compose that behavior therefore reflect the low-level behaviors 156

b0, b1, . . . , bk that together compose Bi. 157

C. Example of High-Level Behaviors 158

For clarification on our definition of high-level and low-level 159

behaviors, consider the example where behaviors X , Y , and Z 160

are each composed of a set of known lower level behaviors a, b, 161

and c. The different sequences in which a, b, and c are executed 162

in each high-level behavior serves to distinguish them from 163

each other. Our system learns how a human executes behaviors 164

X , Y , and Z (individually) by creating a mapping between the 165

observations of the human’s actions and the sequence of the 166

subbehaviors (a, b, and c) that comprise each behavior X , Y , 167

and Z. Assuming that this task is successfully done, an even 168

higher level behavior A can thereafter be learned in the same 169

manner, provided that its execution is composed of a sequence 170

of behaviors X , Y , and Z. A diagram illustrating this point is 171

provided in Fig. 1. 172

Behaviors a, b, and c are considered to be low-level (in this 173

case atomic) behaviors with respect to behaviors X , Y , and Z. 174

In turn, X , Y , and Z are considered as (nonatomic) low-level 175

behaviors with respect to A. 176

These types of situations are easily found when we consider 177

tactical human behavior. The task of flying an airplane, as 178

another example, can be broken down into, in the most extreme 179

case, trivial atomic actions—pushing buttons, guiding a control 180

stick in a certain direction, pushing or pulling on the throttle 181

knob, etc. However, flying an airplane is certainly NOT a trivial 182

task. The real knowledge is contained in the processes involved 183

in deciding when to push a particular button, when to pull back 184

on the stick, etc., and in what sequence, depending on the situ- 185

ation at hand. The knowledge is so complex, in fact, that there 186

are hierarchies of subbehaviors that play a role in representing 187

the behavior of flying a plane. Learning to fly is not achieved by 188

learning “buttonology” or stick-maneuvering techniques per se. 189
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It is achieved by learning to execute procedures (e.g., landing,190

taking off, and maintaining a heading) that involve knowing191

when to push what button and when and how to maneuver the192

control stick and/or the throttle.193

The argument posed by this example is that, if given the low-194

level (atomic or not) functionality used by the human, learning195

his behavior becomes an exercise in identifying a mapping196

between environmental and situational cues, which we will call197

expert stimuli, and the low-level function or behavior that the198

human chooses in response to that cue.199

D. Observations of Human Performance200

In this paper, we describe a learning system that gathers a201

sequence of observations made of a human performing a high-202

level behavior. By examining the observations, our system aims203

to correctly identify the low-level behaviors being executed204

without feedback from the human and map them to the stimuli205

within the observations that prompted their selection. With the206

help of the CxBR modeling paradigm, this system can then207

be used to develop intelligent models of the learned high-level208

behavior.209

Using CxBR, low-level behaviors are represented as individ-210

ual contexts, whereas the highest level behavior to be learned211

is considered to be a CxBR mission. Contexts may contain one212

and only one behavior (atomic or otherwise) or be composed213

of several behaviors (atomic, nonatomic, or a combination214

thereof); which of these is true depends on the context. Some215

contexts permit only one action to be performed by one atomic216

behavior. Other situations, however, call for a context that217

includes more than one behavior although not concurrently.218

We define a single observation to be a point acquisition219

of time-dependent inputs used to infer assertions about an220

agent’s environment. We can use time to differentiate and make221

relationships between two otherwise independent observations.222

In the following equation, we define an observation O(t) that223

occurred at time t:224

O(t) = 〈i1, i2,, i3, . . . , in〉.

Vector O(t) contains fields that represent each input that was225

introduced to the observer at time t. An observation sequence,226

therefore, can be considered to be the set of all observations227

occurring within an arbitrary period of time. The assumption228

made here is that observations within a time interval occur in229

discrete points in time rather than continuously. Thus230

O{t0 − tn} = {O{t0}, O{t1}, . . . , O{tn}} .

As it pertains to our investigation, a single observation includes231

information about the current environment as well as the current232

actions of the human. This is critical, because we are attempting233

to draw a cause–effect relationship between occurrences in the234

environment and the actions of the observed human. For this235

research, the learning system develops tactical knowledge from236

an observation sequence by creating a mapping between an237

observation pattern and the observed human response. How-238

ever, it is necessary to process these observations and, from239

them, learn the knowledge that produces these relationships240

between the environment and the reaction(s) of the observed241

human. If we consider these observations as a set of training242

examples, learning then can be used to generate a knowledge243

base about actions within the given scenario. Khardon [9] infers 244

a similar definition in his discussion on supervised learning. 245

In our case, however, the learning is to be unsupervised at 246

the input. The observed human does not at all interact with 247

the agent, and learning is done by merely inferring how the 248

human has reacted to his observations. Nevertheless, we define 249

learning from observation as follows: 250

The use of data acquired, through observation, to as- 251

sert knowledge from which a human’s behavior can be 252

intimated. 253

We can use our earlier definition of observation to formalize 254

this definition. To do this, we consider the learning process for 255

human E as some function λ of a given observation sequence 256

OE , i.e., 257

λ{OE} = AE |AE = {A1, A2, . . . , Aw}.

In the preceding equation, the learning algorithm designated 258

by λ operates on an arbitrary observation sequence OE and 259

outputs a set of assertions AE that, in some fashion, describe 260

the behavior that has been observed. As the abstraction of 261

“learning” does not imply a restriction in the format of what 262

is learned, these assertions are likewise free to take on various 263

forms: equalities, thresholds, rules, etc. 264

The potential utility of such a system is twofold. On one 265

hand, the time required to develop acceptable representations 266

of tactical behavior for such agents could be significantly 267

reduced. Instead of producing a complete high-level behavior 268

model by hand, this system could automatically generate what 269

is arguably the most difficult portion of the knowledge: the 270

context transitions. 271

The second benefit includes the correctness of the knowl- 272

edge learned. Eliminating a middle person in the development 273

process would conceivably eliminate a source of errors. Fur- 274

thermore, humans who perform their task with a high degree 275

of proficiency often cannot articulate their knowledge to a third 276

party [10]. A model constructed using a human’s introspective 277

explanation can therefore suffer from incompleteness (or even 278

incorrectness) based on this shortcoming. In allowing a system 279

to automatically learn this behavior by observing a human in 280

action, the intermediate step of asking the human to articulate 281

his knowledge is eliminated. 282

There are, however, some potential caveats in our approach. 283

One is that all contexts and corresponding templates used must 284

be authored a priori. This is one significant disadvantage faced 285

by a future developer of an application using this approach. 286

While this is part of the larger problem of knowledge acqui- 287

sition and machine learning, it nevertheless is quite pertinent 288

to our approach. This paper can indeed serve to reduce the 289

human effort by automatically learning the context transitions. 290

However, significant manual labor is still necessary to prepare 291

the table, so to speak, in order to learn these (e.g., prepare the 292

simulation, run the human subjects, and collect all the observed 293

data). Furthermore, behaviors not predefined as templates can- 294

not be recognized and therefore cannot be learned. These issues 295

are further discussed in succeeding sections. 296

Before describing our work in greater detail, let us first 297

review the state of the art to see how our work relates to that 298

of others in the field. Given that our application is to poker, 299

we review some of the classic literature on board games and 300

computers. 301
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II. RELATED WORK302

Much research can be found in the literature describing learn-303

ing from observation. While some works address learning high-304

level behaviors, most focus on learning low-level behaviors.305

This section describes prior research related to our work.306

Board games and computers have a long history together,307

dating back from the works of Shannon [11], Turing [12], and308

Newell et al. [13]. Charness [14]–[16] studied bridge and chess309

to identify expertise and their relation to cognitive science. He310

and his colleagues more recently have used this platform to311

examine the effects of aging [17]. Certainly, a landmark in312

computer intelligence was achieved when Deep Blue beat chess313

Grand Master Garry Kasparov in a chess match in 1997 [18].314

This was preceded by important chess playing computers such315

as HITECH, MEPHISTO [19], and Deep Thought [20], which,316

prior to Deep Blue, were generally considered to be the best of317

the chess programs.318

Two early researchers of GO playing programs were Zobrist319

[21] and Ryder [22]. While their work met with partial success,320

the results of their work could not play as well as a human321

novice. Additional early work on GO was reported by Kierulf322

and Nievergelt [23], Kierulf [24], and Wilcox [25].323

More to the point, machine learning and board games also324

have a greatly intertwined history, dating back from Samuel’s325

seminal paper on learning to play checkers [26] and Waterman’s326

subsequent paper on learning heuristics in draw poker [27].327

These two seminal works pioneered the machine learning field.328

Michalski et al. appear to be the first to mention observational329

learning in [28]. Here, they associate learning from observation330

with unsupervised learning.331

In the neural network community, “learning through ob-332

servation” means that the training data are observations.333

Fernlund et al. [5] define learning from observation as “the334

adoption of behavior . . . through the use of data collected335

by means of observation.” A more descriptive definition de-336

scribes learning from observation as “inferring concepts by337

observation” [29]. Here, observation is defined as the act of338

collecting “characteristics of the relevant environment” [29].339

What an observer infers from these observations, however,340

is a far more complex matter, and so there must be a clear341

distinction between what is observed and what is inferred about342

a given environment. One cannot assume that what is reported343

by a human as “observed” constitutes knowledge that has not344

already been asserted based on his a priori knowledge about his345

task or scenario. The goal for our learning agent is to develop346

inferences about “what it sees” based on how a human reacts to347

his observations—not how the human reports them. Therefore,348

observation must be considered as it pertains to the agent—We349

want to record what the agent sees through the human’s eyes.350

The observations must not, however, include expressions of351

what the human may annotate or report about his environment.352

Sammut et al. [30] and Camacho [31] developed systems353

to observe a pilot’s behavior on a flight simulator and imple-354

mented the knowledge learned from observation in decision355

trees. A set of rules was developed as part of the learning356

process. As part of his work, Sammut coined the phrase “behav-357

ioral cloning” to reflect this approach. Sammut’s work involves358

learning rules to perform motor skills involved in flying an359

airplane. The resulting system learned to fly an airplane as if it360

were on autopilot in a very strictly defined flight plan. It did not 361

leave room for generalization. Isaac and Sammut’s subsequent 362

work [32] extended the previous work to incorporate significant 363

generalization, albeit in a still rather confined domain (maneu- 364

vering an aircraft through turbulence). 365

Sinai and Gonzalez [4] introduced a framework for learning 366

implicit human knowledge through observation of automobile 367

driving behavior within a simulation. Their work is quite rele- 368

vant to this research because of their attention to partitioning the 369

knowledge by situation (although not called contexts therein). 370

Our work presents almost the opposite approach, in that we 371

assume that the low-level behaviors such as those learned by 372

Sidani and Gonzalez’ system (denoted as primitive’ in their 373

paper) have already been defined a priori. This leaves the actual 374

situation identification knowledge to be learned through our 375

neural network approach. 376

Henninger [33] describes a neural-network-based system that 377

learns how to accurately predict the movement of vehicles 378

in a distributed simulation (ModSAF). Her model builds a 379

predictive model for tank actions by observing a nonhuman but 380

independent algorithm manipulate the tank agent in ModSAF. 381

Gerber [34] employs a template-based interpretation (TBI) en- 382

gine that predicts tank-position information by first selecting its 383

inferred behavioral context. TBI is a method of inferring tactical 384

intent and is likewise essential to our work. It is described 385

in Section III-A. While confined to tank-driving behaviors, 386

Gerber’s work is highly relevant to our research. He decom- 387

poses the behavior into a set of contexts, which are repre- 388

sented using TBI templates, and using a learning algorithm, 389

he attempts to optimize the identifying weights associated with 390

the templates. The data used in learning is collected from 391

observation of a human-controlled tank. By contrast, the work 392

described in this paper assumes an accurate definition of a set 393

of context templates and attempts to learn the cues that result in 394

a specific context selection. 395

Johnson et al. [35] describe a fuzzy ARTMAP (FAM)-based 396

system that allows computer-generated forces to gradually learn 397

behavior online during a real-time simulation. FAM is reported 398

to have several benefits, including relatively few parameters 399

and the ability to extract and easily explain the results of the 400

learning [36]. FAMs are also essential to our approach. 401

van Lent and Laird [37] outline the development of KnoMic, 402

a system that extracts knowledge from an expert through obser- 403

vation and then generalizes this knowledge in the form of rules 404

that can be used by an agent to perform a similar task to that of 405

the expert. Whereas Henninger’s and Sammut’s earlier work fo- 406

cused on learning atomic behaviors from observation, KnoMic 407

is assigned to learn how to execute specific and detailed tasks, 408

such as flying an airplane to a certain destination and in a certain 409

fashion. The authors refer to these types of tasks as performance 410

tasks. As follow-up research to van Lent’s KnoMic system, 411

Konik and Laird’s work [38] involves the learning of goal hier- 412

archies using inductive logic programming. In the observation 413

mode of this algorithm, the human is again asked to execute a 414

task while annotating goals that he/she has completed during 415

the task. The learning algorithm is then responsible for learning 416

the selection and termination conditions of each goal (when the 417

behavior to execute each goal should be turned on/off). Their 418

use of the human actor beyond demonstrating his skills on a 419

simulator makes their work fundamentally different from ours. 420



STENSRUD AND GONZALEZ: DISCOVERY OF HIGH-LEVEL BEHAVIOR 5

Fernlund et al. [5] succeeded in building a system that421

learned both the low- and high-level behaviors involved in422

driving a car by observing a human drive a car simulator423

through a virtual city. Their work used genetic programming to424

learn individual contexts. Their system generalized quite well425

and required no intervention by the human actor in the process,426

beyond performing the behaviors.427

Schaal [39] makes a slight distinction between “learning428

from observation” and “imitation learning.” In most cases,429

learning systems for robots in manufacturing applications try430

to imitate the exact movement of the human, rather than learn a431

general behavior. This is typically because, in such applications,432

the objective of the robot is to imitate the human as closely as433

possible in a controlled environment.434

Walczak and Fishwick [40] describe a study to characterize435

human expertise by observing the move patterns of chess436

players. Based on the chunking theory of learning [41], they437

examine the records of games played by prominent chess mas-438

ters and a developing player, and compare the chunks learned439

by these individuals. Their primary objective is not to learn to440

play the game but to quantify and describe expertise in chess.441

Other related work reported in the literature includes that of442

Pomerlau et al. [42], Bentivegna and Atkeson [43], Moukas and443

Hayes [44], Yang and Asada [45], Floreano and Mondada [46],444

Pentland and Liu [47], Fogel et al. [48], Morrison [49], Crowe445

[50], Friedrich et al. [51], Kaiser and Dillman [52], Rajput et al.446

[53], Hieb et al. [54], Gingrich et al. [55], Hovland et al. [56],447

Kosuge et al. [57], Lee and Chen [58], [59], Khardon [9],448

Modjtahedzadeh and Hess [60], Fix and Armstrong [61], and449

Nechyba and Xu [62], [63]. Space limitations prohibit further450

discussion of these contributions.451

Our work differs from the aforementioned works in452

two ways.453

1) We specifically learn the context transitions that are used454

to link together low-level behaviors into one high-level455

behavior.456

2) We do not interrupt or otherwise consult with the human457

actor, before, during, or after the learning session. This458

has the advantage of being able to conceivably learn the459

behaviors of human actors who do not wish to cooperate460

with the process (e.g., an opposing team and military461

enemies). We discuss this in more detail in Section VI.462

The works closest to ours is that of Konik and Laird [38]463

and van Lent and Laird [37] in that they both learn high-level464

behaviors. However, consultation with the human actor appears465

to be essential in their approach. Our work represents a different466

approach to the work of Fernlund et al. [5]. Whereas they467

learn the low-level contexts as well as the transition rules, our468

work concentrates on learning the transition rules using a vastly469

different approach.470

III. OUR APPROACH TO LEARNING FROM OBSERVATION471

Here, we describe an algorithm that identifies low-level472

(possibly atomic) behaviors when executed by the human and473

creates a mapping between them and the observations that pre-474

cede them. The name of this algorithm is FAM/Template-based475

Interpretation Learning Engine (FAMTILE). However, brief476

descriptions of TBI and FAM neural networks are provided for477

the interested reader. Readers familiar with these techniques can 478

skip to Section III-C. 479

A. Template-Based Interpretation 480

TBI was conceived by Drewes [64] and later enhanced by 481

Gerber [34]. TBI infers tactical intent from observed atomic 482

actions and allows for an inference to be made about the low- 483

level sequence of actions executed by the human and observed 484

by our system. In TBI, contexts are represented by context tem- 485

plates or templates, which list the expectations of what a human 486

would have to do (in terms of atomic actions) when in the 487

process of carrying out the intended actions. By progressively 488

checking off as “done” the actions that are actually observed, a 489

clearer picture of the intentions of the observed actor comes 490

into focus. Within each template is a set of attributes that 491

indicate actions and conditions; each attribute within a template 492

is considered to be relevant to the context represented by that 493

template. TBI operates by associating a specific observation 494

or observation sequence to the attributes of each template to 495

determine which (if any) of the attributes are satisfied. TBI 496

continuously computes a cumulative score for each template 497

over time. This score is proportional to the number of attributes 498

of a template that are satisfied (Drewes called it “checked 499

off” in his dissertation [64]) and their respective weight. As 500

time passes and more observations are logged and compared 501

to the template’s attributes, the cumulative scores of those 502

templates that, in fact, reflect what is happening will tend to 503

rise, whereas those that are irrelevant will either remain low 504

or possibly decrease. At a certain point in time, the template 505

earning the highest score is flagged by the TBI engine as 506

having sufficient confidence that that context is indeed what the 507

observed performer is doing. This process resembles the game 508

of Bingo in many ways. A card is analogous to a template, and a 509

number call to an observation. When a threshold is reached in a 510

specific card (a horizontal, vertical, or diagonal line is checked), 511

success can be declared by yelling “Bingo.” 512

As an example, consider the tactical behavior of driving a car. 513

As a high-level behavior, driving includes several lower level 514

behaviors executed in support of the high-level task: stopping at 515

a red light, passing slower traffic, avoiding and being aware of 516

pedestrians, etc. Oftentimes, there are attributes and cues from 517

the driver and/or from the surrounding environment that can 518

indicate to an observer which atomic behavior is being executed 519

by the driver. For instance, a passenger does not need to ask the 520

driver to indicate when he’s attempting to pass a slower car, he 521

can simply look out the window—the driver has changed lanes 522

and increased his speed, the passed car is driving too slow, etc. 523

In TBI, we consider these cues to be the attributes of a 524

context and group them together within a context template. 525

These attributes are then assigned a weight indicating their 526

importance in identifying the context. Because the behavior ex- 527

pected within each context is known a priori, creating templates 528

with useful attributes is a reasonable task for a KE. 529

B. FAM Neural Networks 530

FAM is a neural-network clustering technique developed 531

at Boston University in the early 1990s. The network was 532

introduced by Carpenter et al. [36] and is described in detail by 533
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Fig. 2. Block diagram of a FAM architecture [65].

Georgiopoulos and Christodoulou [65]. The goal behind this534

technique is to produce a neural network that is proficient at535

dealing with “misbehaved” batches of test patterns, i.e., patterns536

where a minority of the testing patterns share little in common537

with the majority used to train the neural network but are538

equally (if not more so) relevant.539

A block diagram of the FAM architecture is provided in540

Fig. 2. The ARTa and ARTb modules within FAM are responsi-541

ble for generating pattern templates that correspond to a certain542

pattern form, essentially dividing the pattern set into clusters.543

Each template created within the ARTa module represents an544

input-pattern type that corresponds to a specific output template545

created by the ARTb module. The Inner-ART module is then546

responsible for creating a many-to-one mapping between the547

templates within ARTa and those within ARTb.548

For example, consider a situation where a neural network549

is trained to recognize alphabetical letters when seen and, in550

response, produces a specific sequence of numbers based on the551

letter input. When training a FAM module, the ARTa module is552

responsible for learning to recognize each input letter, whereas553

the ARTb module is responsible for learning to recognize each554

output sequence. The Inner-ART module creates the map-555

ping between specific letters and their corresponding output556

sequence.557

C. Our Approach558

The FAMTILE algorithm is composed of two major parts:559

Part 1 involves inferring the context being experienced by the560

human actor being observed. Part 2 relates to mapping the con-561

text inferred in part 1 to the environment to determine the562

potential causes of a context transition. Part 1 employs the563

aforementioned TBI algorithm, whereas part 2 employs FAM564

neural networks. These two parts are independently discussed.565

After learning the set of conditions that trigger atomic be-566

havior transitions, a CxBR model that reflects the high-level567

behavior of the human observed during the simulation can568

then be constructed. This model contains both the low-level569

contextual knowledge developed a priori and the knowledge570

learned by this system that identifies when each low-level 571

context becomes activated. We begin this section by defining 572

terms and discussing how the observational data are captured. 573

1) Acquiring the Observational Data: Before the learning 574

process can begin, the human actor to be observed must clearly 575

understand the mission he is to perform. He must also be in 576

an environment (either live or simulated) that he can affect 577

through his actions. Furthermore, the observational system 578

must be situated so it has the most direct access to the stimuli 579

seen by the human actor without impeding him in any way. 580

In this paper, we simplify the problem somewhat by using a 581

simulator to implement the learning algorithm. This facilitates 582

the observation process and allows us to concentrate on the 583

technical feasibility of the algorithm. 584

While the human actor executes a high-level mission within 585

the simulation, FAMTILE records all relevant and visible stim- 586

uli on the human, along with the actions taken by the human 587

at the time those stimuli are presented. A recording is made 588

at each decision point i reached during the execution of the 589

behavior to be learned. In the simulated world, these decision 590

points can be either continuous points or segments of time or 591

planned decision points where time is not relevant, such as in 592

a turn-based game, such as chess or poker. To account for the 593

reactive nature of the human’s actions at any decision point i, 594

we refer to the time at which the stimuli are presented as 595

time i− and the time at which the human switches his active 596

context as time i+. We assume that the human cannot anticipate 597

the environmental trigger but must perceive it before acting to 598

switch contexts. Anticipation is a complicating feature at this 599

time, and we leave that for future research. However, we see 600

no fundamental impediment to a future implementation of this 601

feature. 602

At the point when the human completes the scenario, the 603

learning system will have compiled a set of recordings that 604

should encompass all relevant stimuli and the actions taken by 605

the human actor. This set is known as the observation sequence 606

for the executed scenario. Individual members of this sequence 607

are distinguished by the simulation-time at which they were 608

recorded and are referred to, naturally enough, as observations. 609
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Fig. 3. Generic context template and the TBI engine.

These observations, which are labeled σi, denote decision point610

i, along with the set of visible stimuli Φ that existed at i− and611

the set of actions Γ taken by the human at i+. Thus612

σi = 〈Φi− ,Γi+〉

where Φi− = {o0, o1, . . . , on} are the traits of observation i,613

and Γi = {jo, j1, . . . , jn} represent the actions taken by human614

in response to observation at i.615

We define the complete observation sequence Ωn to be the616

set of observations σi taken of the human throughout an entire617

scenario n, i.e.,618

Ω =
⋃
i

σi.

After the observations of the human are complete, the entire ob-619

servation sequence Ω is presented to FAMTILE. At this point,620

the actions of the human are interpreted by the TBI engine,621

which will convert Ωn into a new observation sequence Ω
′
n,622

where the set of actions taken (represented by σi in Ωn) are623

replaced with the interpreted context. This context, which is624

inferred by TBI for decision point i, is represented by Ψi+ in625

the following equation:626

σ
′

i = 〈Φi= ,Ψi−Ψi+〉

Ω′ =
⋃
i

σ
′

i.

In addition, represented within σ
′
i is the inferred active context627

of the human prior to decision point i. This context is denoted628

as Ψi− and is identical to the context inferred from the previous629

decision step Ψi−1+ . FAMTILE’s TBI engine achieves this630

transformation by making an interpretation of each atomic631

action. Prior to the observation time, a KE defines each atomic632

behavior (i.e., the behavior the system will observe) that is633

necessary for the execution of some high-level behavior (the be-634

havior the system will infer). From these specifications, the KE635

also creates a set of context templates. Each of the templates’636

attributes is derived from fields within observation σi.637

Now we move on to the first part of the FAMTILE process:638

how to infer the human’s context.639

2) Part 1—Inferring the Context of the Human Performer:640

We assume that all low-level behaviors can be identified641

through observation. Because the low-level behaviors that com- 642

pose a particular context are known, we need only recognize 643

them through observation and record their presence. Then, we 644

must put them together into a sequence that explains the higher 645

level intentions (i.e., the context) of the observed performer. 646

To accomplish the latter case, we employ the TBI technique 647

discussed in Section III-A. 648

For convenience, we will consider an arbitrary set of con- 649

texts C = C1, C2, . . . , Cn and corresponding set of templates 650

T = T1, T2, . . . , Tn. Using this representation, we say that a 651

template Tj includes all attributes and weights common to its 652

corresponding context Cj . In a given scenario, all contexts Ci 653

are represented within TBI by a specific template Ti that defines 654

the attributes of Ci. 655

Each attribute ai in template Tj is a representation of a 656

condition that is prevalent in context Cj . Weight wi represents 657

the importance of ai in determining context Cj . A low weight 658

value for wk indicates that attribute ak is not an essential or 659

even very important characteristic of context Cj . Conversely, a 660

high value for wm indicates that attribute am is highly relevant, 661

perhaps even essential, for context Cj . This representation was 662

used in both the works of Drewes [64] and Gerber [34]. Thus 663

Tj = {〈a0, w0〉, 〈a1, w1〉, . . . , 〈an, wn〉} .

The TBI engine infers a context by first evaluating the state 664

of each attribute in its set of predefined templates. After each 665

attribute is assigned a value (typically T or F, depending on 666

whether that action has been observed or not), a weighted sum 667

is computed for each template Tj and used as its template score. 668

This template score sj is computed as follows: 669

sj =
n∑

i=0

aijwij .

The value assigned to each attribute ai in template Tj depends 670

on the nature of the attribute. Fig. 3 represents a TBI engine 671

that considers a set of m context templates and n attributes per 672

template. On the left side of the figure, we see the composition 673

of a generic context template score. Note that the score is 674

generated using a simple weighted sum of each attribute score 675

(computed using the preceding equations). The right side of the 676

figure illustrates the comparative portion of the engine—each 677

score is reviewed and the maximum score is selected. The 678
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context associated with smax is chosen as the inferred context679

for that observation. Stensrud [66] provides a more thorough680

description of how TBI is applied to FAMTILE. The output of681

this first part, therefore, is an indication of what context the682

human is experiencing while the system observes his actions.683

3) Part 2—Associating Context Change to Environmental684

Triggers: This section discusses the part of the FAMTILE685

algorithm that learns the transitions between contexts affected686

by the human performer. It accomplishes this through neural687

networks.688

The ability of a neural network to handle “misbehaved”689

training sets is of particular relevance to learning from observa-690

tion. Consider the knowledge required to drive an automobile,691

which is an example of a tactical skill. The ability to handle a692

tire blowout while driving, particularly when at high speeds,693

is certainly important. However, this skill is rarely required,694

simply because tires rarely ever blow out. If one were to observe695

an automobile driver in order to train a neural network how696

to drive, the training pattern corresponding to a blown-out tire697

would represent a very small minority of the training set.698

In a CxBR model for tactical control of an entity in a699

simulation, it is possible that important events requiring a700

specific context transition infrequently occur. Because of this,701

training patterns representing these types of context transition702

cues will most likely be underrepresented within a training set.703

In such situations, traditional neural networks have a difficult704

time learning these patterns as a result of the strong emphasis705

on the other patterns. In these cases, the neural network tends to706

“overlearn” the more frequent patterns and discard the others as707

noise within the training set. In the case of our work, this noise708

may represent an interesting and important observation, making709

the human’s response to it very important to record. FAM neural710

networks are adept at recognizing the infrequent patterns with-711

out reversing the knowledge of any well-learned patterns [65].712

Through the creation of clusters, FAM also has the ability713

to handle a large sample of training patterns necessary for a714

complete observation of a human’s behavior. This clustering715

process has the effect of significantly reducing the complexity716

of a decision space, based on the size of the clusters created.717

The advantage here can be visualized by again considering the718

task of learning driver behavior. Because recording a decision-719

making cue (e.g., to change lanes, to brake, and to turn) often720

requires fine granularity across observations, several hundred721

observations of the driver/expert may be recorded throughout722

a few-minute driving task. Furthermore, values for the driver’s723

speed, heading, distance to other vehicles, and other potentially724

significant factors will certainly fluctuate, at least nominally,725

along a several-second interval where no significant behav-726

ioral change is executed. This is not because the driver con-727

sciously decides to make these changes (decisions that should728

be recorded and learned) but simply because of the dynamics729

of the environment and the driver’s inherent inability to hold an730

identical speed and course. A FAM system allows for nearly731

identical input patterns such as these (that map to the same732

output) to be represented by a single cluster. By creating a less733

complex decision space, we significantly reduce the order of the734

learning task.735

Our specific learning objective here is the transitions between736

contexts. The new context would contain the appropriate func-737

tionality to allow the agent to properly manage it. FAMTILE738

is built to recognize and capture those triggers and learn them 739

for subsequent use by the agent. We assume that all other 740

functionality—that which permit a context to correctly control 741

an agent when active—is already known a priori. 742

Set Ω′ is, at this point, transformed into a form usable by 743

FAM. This operation is done by converting each σ
′
i into a single 744

training pattern. For a training pattern to be readable by the 745

FAM neural network, each field must be a fuzzy value (some 746

real number between [−1, 1]). Within FAMTILE, the input 747

portion of the training pattern is derived from Φi= and Ψi− , 748

whereas the output pattern is derived from Ψi+ . 749

The subset Φi= of observation sequence Ω
′
n consists of fields 750

representing the human’s complete observation at time i−. The 751

human’s active context at i− is denoted by Ψi− . Converting the 752

observation for Ψi− , the observed active context at i− involves 753

the same procedure, regardless of the scenario. To convert the 754

identified active context into a field within the input pattern, 755

one field is set aside for every possible context in the scenario. 756

If a context j is identified as the active context, the jth field is 757

assigned a value of 1, and the other “context fields” within the 758

input pattern are assigned a value of 0. 759

This is done to persuade input patterns with different active 760

contexts to bind to different templates in ARTa. The following 761

equation represents an arbitrary input pattern converted from 762

Φi= that can be presented to FAM, which we refer to as Φ̇i= : 763

Φ̇i= =
observation fields︷ ︸︸ ︷

o1, o2, o3, . . . , ok−1, c1, c2, c3, . . . , cn−1︸ ︷︷ ︸
active context(n−1)

.

Output pattern Ψi+ is simply a representation of the inferred 764

active context at i+. Because of this, Ψi+ can be represented 765

as a j-bit binary number to identify one of j distinct contexts 766

as active, just as is done for the inferred context at i−. Within 767

Ψi+ , all bits are set to 0, except for one. If that one set bit is 768

the ith bit (i.e., oci in the expression for Ψ̇i+ ), that means that 769

context i has been identified as the active context for i+. This 770

representation scheme will make for a trivial clustering task for 771

ARTb, because exactly one output cluster will be generated per 772

context. Representing a context name in this manner allows for 773

the output of ARTb to be both readable and unambiguous for 774

either a KE or a separate module created to read its output. 775

The following equation represents an arbitrary input pattern 776

converted from Ψi+ that can be presented to FAM, which we 777

refer to as Ψ̇i+ : 778

Ψ̇i+ = oc1, oc2, oc3, . . . , ocn−1

(a bit string representing the selected active context).

The input and output patterns Φ̇i= and Ψ̇i+ presented to FAM 779

reflect observations recorded at specific times during the sce- 780

nario, along with the active contexts at those times, as identified 781

by the TBI engine. The input patterns are represented by quan- 782

titative values for each stimulus on the human—enemy move- 783

ments, environmental conditions, current physical conditions, 784

etc. The output patterns represent the action taken by the human 785

in response to the input pattern presented, where each action 786

reflects a transition from the provided context at the input to a 787

new active context which is inferred using TBI. The implication 788

here is that every action (and thus every output pattern) will 789
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Fig. 4. Learning context transitions in FAMTILE.

represent a transition to a new context, which is of course not790

always the case. Rather, actions representing no context transi-791

tion are also represented by patterns that require a transition to792

the current context—the equivalent of no context change.793

A training pattern is generated and presented to FAM for794

each observation made of the human during the execution of795

a scenario. Learning occurs through the creation of clusters in796

the ARTa and ARTb modules and of a many-to-one mapping797

between those templates. ARTa templates represent clusters798

of input patterns, similar in their representation, to which the799

human has responded by making a specific context transition.800

That transition is stored in a template in the ARTb module,801

and a mapping between the two templates is created. When802

the network subsequently encounters an input that matches the803

input pattern cluster represented by that template in ARTa, it804

will know that the appropriate response is stored in its mapped805

template in ARTb.806

Fig. 4 illustrates FAMTILE in learning mode. A recorded807

observation includes both the stimuli on the human and his808

resultant decision. A decision is considered to be the action809

made by the human in response to a set of stimuli presented810

at i and is expressed as the context that the agent enters (makes811

active). These stimuli, along with the active context in which812

the human is operating at i−, constitute the input pattern that813

is presented to ARTa. The actions that the agent executes in814

response to these inputs (at i+) are analyzed by a TBI module, 815

which then outputs the most likely candidate for the context 816

that corresponds to those actions. That context name is then 817

presented to ARTb as the output pattern for i and is also stored 818

for the next decision-point i + 1, where it will be presented as 819

part of the input pattern as the active context prior to the stimuli 820

presented and actions taken at i + 1. 821

The task for FAM, then, is to learn the correct context transi- 822

tion, given the current active context and the input stimuli on the 823

agent. To do this, the network will create templates in ARTa that 824

effectively cluster similar input patterns that induce a specific 825

context transition by the human. The template corresponding 826

to the actual transition made will be stored in ARTb, and the 827

Inner-ART module will create a link representing a mapping 828

between the two templates. After the training phase is complete, 829

there will exist a many-to-one mapping between the input- 830

pattern templates in ARTa and the context transition templates 831

in ARTb. 832

D. FAMTILE Operation 833

A summary of the sequence of events required for the 834

FAMTILE algorithm is presented here. 835

1) The human actor executes a high-level behavior in some 836

simulation or simulator. 837
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Fig. 5. Block diagram of the testing environment.

2) FAMTILE collects an observation sequence of the hu-838

man’s actions.839

3) The TBI engine interprets human actions and infers cor-840

responding contexts.841

4) The observation sequence with contexts inserted is con-842

verted into a set of input patterns.843

5) The sequence of contexts is converted into output844

patterns.845

6) The input/output patterns are paired and presented as846

training patterns for the neural network.847

7) The neural network is trained to recognize observation848

patterns and map them to specific high-level contexts.849

IV. TEST PROTOTYPE850

To evaluate the FAMTILE concept, a prototype system was851

built. However, in evaluating this prototype, it was first nec-852

essary to construct a test bed simulation in which training853

vignettes could be developed and executed. This simulation was854

written in Java and was designed to interface the FAMTILE pro-855

totype with the testing vignettes and to provide a graphical user856

interface for the human actor to perform his behaviors. A block857

diagram of the simulation environment is provided as Fig. 5.858

The simulation engine provides both the logic of the vi-859

gnettes and their graphical user interface, which was developed860

in Java. This interface was created in an attempt both to attract861

human test subjects to participate and to provide them with as862

realistic a vignette as possible.863

The simulation engine implements the logic and execution864

engine for each of the four vignettes. When a human subject865

selects one of them, the simulation instantiates it and presents866

the human with his first decision point. Each vignette is such867

that the human actions are turn based, and observations for868

a certain decision step represent a set of stimuli and resultant869

action for one turn. In a turn-based simulation, decision steps870

are triggered on human actions and not on actual clock time.871

This property ensures for FAMTILE that the human is making872

decisions in response to a known set of observations and that873

there is a correct pairing between those observations and that874

action. Otherwise, the system could not guarantee that the875

human was making decisions based on the observation recorded876

for that corresponding time step. The actions that take place877

within the simulation during training mode are presented here.878

• The simulation prompts the human actor to enter his/879

her name.880

Fig. 6. Vignette A.

• After the name is entered, the human selects a training 881

vignette. 882

• When a vignette is selected, the simulation engine calls 883

the initial commands that begin that vignette. That vignette 884

then displays the situation for the human and then pauses 885

until the human has made his/her response. 886

• That response triggers an event in the simulation that 887

brings up the next situation and writes the stimuli/response 888

pair to a text file, which is read by the interface class after 889

the training session. 890

To make a thorough evaluation of the learning algorithm, four 891

different test vignettes were developed. These are based on two 892

behaviors: 1) moving within a maze environment and 2) playing 893

a game of poker. 894

A. Maze Navigation: Vignettes A and B 895

The first two training vignettes involve the navigation of a 896

2-D maze. For each vignette, the human is asked to navigate 897

from his position within a virtual maze to a specified goal po- 898

sition. At each point during the vignette, the player is provided 899

a compasslike directional icon that indicates the distances—in 900

both the x and y directions—to the goal position. If the goal 901

position is located within the player’s field of view, its position 902

is marked on the map. 903

In Fig. 6, the circular shape occupying the center position 904

in the maze indicates the position of the human’s avatar. In 905

vignette A, the player can only see one space in all directions 906

from the avatar’s position. From the observations of this figure, 907

the human makes a decision on which direction to move. In 908

this vignette, the avatar and goal positions are reinitialized after 909

each human action. 910

In vignette B, the human is asked to navigate the avatar 911

toward a goal position and is given a larger frame of view (see 912

Fig. 7). The simulation also records the spaces that have been 913

visited by the avatar along his path to the goal position and 914

marks these spaces with a square shape on the maze view. 915
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Fig. 7. Vignette B.

For vignettes A and B, no context templates are required,916

because there are no contexts implied with the human’s move-917

ment. Vignettes A and B are used to provide control cases918

to evaluate the ability of the FAMs to learn without the en-919

cumbrance of the FAMTILE system. More details on this are920

provided in Section V.921

B. Poker Game: Vignettes C and D922

The other two training vignettes involve the game of Texas923

Hold’em Poker. The succeeding sections assume basic under-924

standing of the concepts of poker and the Hold’em Strategy925

[67]–[69]. These vignettes are used to evaluate the ability of the926

entire FAMTILE algorithm, including recognizing the atomic927

actions of the human.928

For this paper, two training vignettes were developed us-929

ing the Limit Hold’em game. In the first poker vignette930

(vignette C), only one betting round occurring prior to the flop931

is considered. The human is placed at a random position at a932

poker table and seated with seven computerized opponents. The933

dealer button is placed at a random position, and each player is934

dealt two hole cards. Starting with the player to the left of the935

big-blind bet, each opponent makes an action (either to fold,936

call, or raise) until it is the human’s turn to act. At this point, the937

human will know his two hole cards, his position at the table,938

and the actions of each opponent who has acted before him. The939

simulation then prompts the human to make an action: either940

to fold, call, or raise. The human’s actions are recorded, along941

with all applicable observations at that point; then a new hand942

is dealt, and the player is reseated. This process continues until943

the simulation has collected a requisite number of observations.944

A screenshot of the simulation for this vignette is provided in945

Fig. 8.946

For the second poker vignette (vignette D), the human is947

asked to make decisions throughout entire hands and accumu-948

late chips throughout the vignette. This is depicted in Fig. 9.949

Fig. 8. Vignette C.

Fig. 9. Vignette D.

This vignette begins just as the first poker vignette—the human 950

is placed at the table with seven opponents, and the button is 951

placed at a random position at the table. A hand is dealt, and 952

each opponent makes an action on their cards until it is the 953

human’s turn to act. When the human acts, however, the betting 954

round continues as well as the hand and proceeds just like a 955

standard round of Limit Hold’em. After each round, the dealer 956

button rotates one chair to the left, and a new hand is dealt. A 957

chip count is stored for the human, which reflects the amount 958

of money won/lost during the sequence of hands played. 959

In this vignette, the situations encountered by the human 960

are far more robust and are designed to challenge his playing 961
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TABLE I
RAISE IN POSITION CONTEXT

ability. Because the vignette involves entire rounds, the oppo-962

nents at the table react to the human’s decisions and use many963

of the strategies outlined in [69] to try and win hands. Since964

this vignette involves the observation of humans playing against965

opponents, it was important to create opponents who are able to966

pose at least minimal challenge. Opponents for the vignettes are967

programmed with the following:968

• basic understanding of the strength of its hole cards before969

the flop;970

• basic understanding of the hand strength relative to the971

cards on the board;972

• basic understanding of the hand potential relative to the973

cards on the board;974

• ability to bluff;975

• ability to trap or slowplay;976

• ability to change play based on position and amount of977

action in the betting round.978

For these vignettes, each action taken by the human must979

first be interpreted by the TBI engine before presenting a980

corresponding output pattern to the FAM. This output pattern is981

the context of the action taken, as interpreted by TBI. Individual982

actions performed by the human are assumed to be a conse-983

quence of the human acting in a particular context. To make an984

interpretation of the context embodied by the human’s recorded985

action, the TBI engine matched each template against the986

appropriate conditions present in the observation. The engine987

then infers the context in which the human is likely to be acting.988

This determination is then recorded by the interface module and989

transformed into a bit sequence representing the output pattern990

for FAM using the technique discussed in the previous section.991

In vignettes C and D, we consider a context to be a circum-992

stance and/or rationale for making a particular play. The raise993

action, for instance, is divided into contexts that differentiate994

the inferred reason for the raise. As discussed by Sklansky [68],995

there is a variety of purposes behind making a raise: to force996

weaker hands to fold; to get more money into a pot; to bluff,997

thereby causing stronger hands to fold; etc. While the human’s998

intent cannot be recorded through strict observation, it can be999

inferred if each of these purposes is encoded by a context.1000

Using expertise gathered from poker experience and from1001

various texts [67]–[69], a set of contexts that result in each1002

possible action (e.g., raise, call, bet, and fold check) in both1003

vignettes was generated. When an observation is presented to1004

FAMTILE’s TBI engine, it is compared against the attributes of1005

each context template and generates a score for that template.1006

Consider the template in Table I for the RaiseInPosition context.1007

This context refers to a situation where the human has made a1008

raise based mostly on his strong position relative to the dealer1009

button. As stated earlier, players on the button get to act last on1010

each postflop betting round, giving them a significant advantage1011

of being able to react to each opponent’s play.1012

Note the weights associated with each attribute. The most 1013

heavily weighted attribute is the player’s action: if the player 1014

does not make a raise, this weight induces the TBI engine to 1015

calculate a low score for this template. The other weights are 1016

assigned based on their relevance to the context, i.e., 1017

scoreatt =
(1 − |attobserved − atttemplate|)

rangeatt
weight.

Since the training patterns for the neural network come directly 1018

from the observations of the human under study, the amount of 1019

diversity among those training patterns is completely dependent 1020

on the robustness of the vignette in which that human operates. 1021

Knowledge used for training can only be extracted from 1022

observations. Thus, any relevant knowledge not executed within 1023

an observed simulation will not be learned by the neural net- 1024

work. Because of this, there will be gaps in the tactical knowl- 1025

edge about situations not encountered by the human during the 1026

observation phase. If these gaps are ignored by the learning 1027

system, the resultant autonomous agent will have no intelligent 1028

response if presented with that unlearned situation. The only 1029

defense against these gaps in knowledge is to train the network 1030

with as many examples as possible in hopes that they sample 1031

as much of the human’s knowledge as possible, i.e., provide 1032

vignettes in which the human must use all or most of his/her 1033

tactical knowledge. 1034

C. Generating Training Inputs from the Observation 1035

Generating training points for the maze vignettes is a matter 1036

of placing the player and goal at random locations within a fixed 1037

maze. Each time the player makes a move, the next training 1038

point input pattern becomes either a new random position for 1039

both him and the goal (as in vignette A) or the updated maze 1040

state based on the direction of the player’s previous movement 1041

(as in vignette B). The output pattern for that training point is 1042

then the action taken by the expert for the corresponding maze 1043

state represented by the input pattern. Each of these patterns, 1044

however, must first be translated into a readable form, so that 1045

they can serve as useful training patterns for FAMTILE. The 1046

output pattern is simply the context that the expert has chosen 1047

as a response to the stimuli represented by the input pattern. 1048

For the Poker vignettes, the simulation must generate and 1049

record the following pieces of information for each observation: 1050

• player’s hole cards; 1051

• board cards (vignette D); 1052

• player’s position; 1053

• position of the button; 1054

• opponent actions; 1055

• amount of money in the pot (vignette D); 1056

• player’s action. 1057

To generate this information, the simulation deals a random 1058

hand to the expert and seven automated opponents. Each oppo- 1059

nent makes an action until it is the player’s turn. At this point, 1060

the state of the hand is recorded, along with the action made 1061

by the player for his turn. For vignette C, each of these points 1062

occurs during the betting round prior to the flop. 1063

For vignette D, this observation is expanded to include inter- 1064

preted information about the player’s hand and position relative 1065
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TABLE II
VIGNETTE D CONTEXTS

to the rest of the table. To do this, the following parameters1066

are used:1067

• hole cards: rank of the player’s two hole cards (both are1068

scaled to values < 1);1069

• suited: boolean value indicating whether cards have the1070

same suit;1071

• hand strength: fuzzy value of the player’s hand, as calcu-1072

lated in [70];1073

• pPot: fuzzy value representing the potential of the player’s1074

hand drawing to a winning hand [70];1075

• nPot: fuzzy value representing the potential of the player’s1076

hand decreasing in strength due to future board cards [70];1077

• betting round: 4-bit binary value representing the current1078

betting round;1079

• last action: 4-bit binary value representing what the player1080

did on his last turn to act;1081

• pot size: number of chips currently in the pot, scaled to a1082

fuzzy value < 1;1083

• opponent bets in pot: scaled to a fuzzy value < 1 by the1084

size of the largest bet.1085

Table II summarizes the contexts used for vignette D. There are1086

a total of 24 contexts. For vignette C, only 12 contexts were1087

used. This is because there are fewer actions available to the 1088

player in vignette C (player cannot bet) and, more importantly, 1089

the player has less information about his hand (no board cards 1090

are shown in vignette C, only preflop action) and therefore 1091

cannot classify the situation to the same level of granularity. 1092

When the simulation records the expert’s action during the 1093

observation, the result is simply a character value representing 1094

either a raise, fold, or call. For both poker vignettes, however, 1095

FAM is used to create a mapping between the observed situation 1096

and the expert’s choice of context, and not simply his action. 1097

To make this transformation, the interface extracts necessary 1098

variables from the input pattern to present to the TBI engine, 1099

which makes a prediction of the most likely context that the 1100

expert has chosen. For vignette C, there are 12 contexts from 1101

which the expert can select. 1102

An output pattern for vignette C would therefore be a 12-bit 1103

binary number with all but one number set to zero. That number, 1104

in the jth position, represents that the TBI engine has identified 1105

context j as the active context for the observation represented 1106

by the input pattern. 1107

In this prototype, the FAM clusters are stored as 1-D 1108

arrays—one for each cluster in the ARTa and ARTb modules. 1109

Each entry in these arrays represents a field value of that cluster. 1110

To store the mappings, a separate array is created that represents 1111

the InnerART module of the FAM. This array contains one field 1112

for each cluster created in ARTa. The value stored in each field 1113

is the index of its mapped cluster in ARTb. For instance, if the 1114

ARTa cluster i is mapped to cluster j in ARTb, the InnerART 1115

array would look like [ia1, ia2, . . . , iac = j, . . .]. Here, the field 1116

containing the value j is stored in the ith slot. 1117

D. Comments on the Application Selected 1118

Two issues that demand some discussion and further expla- 1119

nation come to mind. We address these in this section. 1120

The data obtained were observed from a simulation of games, 1121

rather than from watching humans play the game in the real 1122

world. This is particularly true for the poker-based vignettes (C 1123

and D). The nature of vignettes A and B is such that they really 1124

must be played in a computer for them to make much sense. 1125

The reason for using a simulation, of course, was to maintain 1126

control on the data and avoid noise from the environment. Given 1127

that proof of concept of the learning of transitions was the main 1128

objective of this paper, we believe that this is justified. However, 1129

the question on how one would apply this approach when 1130

observing an actor in the real world arises. Our response is that, 1131

in an ideal world, our approach could be used in such a situation 1132

as long as the features of the actor’s actions could be extracted 1133

from the observations logged by some front-end process. For 1134

example, in poker, the motion of throwing down the card played 1135

signals a player’s move. The front-end process would have to 1136

interpret this move and then focus on the card played to identify 1137

it. Alternatively, folding is signaled by laying down all cards 1138

and pushing them away from the player. Once this information 1139

is fed to our learning system, it would see no difference from 1140

having observed a simulation. However, the envisioned front- 1141

end process would be quite complex and beyond the scope of 1142

this research, at least for the poker application. 1143

More generally, the feasibility of building an adequate front- 1144

end process to extract the features would depend on the 1145
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application, i.e., the type of task being observed and learned. In1146

the case of a physical task or activity where only the location,1147

direction, and speed of a person or a vehicle become important,1148

then a Global Positioning System transmitter that identifies1149

these data to an observer may be sufficient to learn that actor’s1150

or vehicle’s behavior. This was shown by Fernlund et al. [5],1151

albeit using a different approach to learning from observation.1152

However, applications that heavily depend on gestures or hu-1153

man gesticulated motions (such as throwing down cards) may1154

require highly complex front ends to permit their use in learning1155

from observation and would thereby be more limited in their1156

application.1157

The second question that arises is whether this approach1158

would work in continuous games or tasks that are not turn1159

based. Clearly, turn-based games provide a natural cue for the1160

context to potentially change. Such would not be the case in1161

many continuous tasks such as controlling a vehicle (e.g., car1162

and aircraft). While knowing the time of this (potential) context1163

transition cue clearly simplifies the learning, we can project1164

how such a system would work.1165

Our approach would be to look for an “interesting” action or1166

event in the sequence of events being observed. Such an “inter-1167

esting” event would indicate the triggers for the change in con-1168

text, which is what we are trying to learn. The change in context1169

itself could be identified by a TBI engine by identifying when a1170

new template is used to describe the actions of the human actor.1171

“Interesting” activities would include events, changes in behav-1172

ior (e.g., slowing down and changing direction), the actions of1173

others (e.g., an enemy fires upon the human actor), environ-1174

mental occurrences (e.g., it starts to rain), or even geographical1175

location (e.g., passing a landmark and reaching an exit in an1176

interstate highway). Of course, the crux of this approach would1177

be carefully defining the concept of “interesting,” as well as de-1178

termining how to identify all such events and actions just before1179

and after the transition. Events and actions after the transition1180

takes place could indicate anticipation by the human actor.1181

While we did not address the issue of temporally continuous1182

actions, it does remain an interesting subject of future research.1183

V. TESTING AND EVALUATION OF CONCEPT1184

We subjected the prototype FAMTILE system to six test1185

scenarios (TSs) to determine whether the concepts behind the1186

prototype—the use of neural networks to learn context tran-1187

sition criteria from observation of a human performer—work1188

as expected. As described in the previous section, we have1189

developed four vignettes (A–D), each presenting the human test1190

subjects with a different game in which to make decisions. We1191

designed the six TSs to evaluate the effectiveness of our work.1192

TSs 1 and 2 involve the first two vignettes, whereas TSs 3, 4, 5,1193

and 6 involve the poker vignettes (C and D).1194

For this evaluation, four human test subjects (denoted1195

here as Alpha, Bravo, Charlie, and Delta) are used. Three1196

subjects participated in each of the four vignettes, but they1197

were different ones for the various vignettes. This was done1198

to accommodate their varying availabilities. The subjects were1199

selected from a pool of students in the laboratory that had some1200

experience with poker. Three of the subjects were male (Alpha,1201

Bravo, and Charlie), whereas subject Delta was a female. With1202

regard to the poker vignettes, two of the three participating1203

subjects (Alpha and Charlie) considered themselves to be 1204

of moderate to advanced skill, whereas subject Delta was 1205

a relative novice. These subjects were asked to install the 1206

vignettes on their computer and play the games while the 1207

simulation recorded each of their decision points. 1208

Subjects Alpha, Bravo, and Delta participated in TSs 1 and 2. 1209

These scenarios correspond to vignettes A and B, respectively, 1210

and evaluate the ability of FAM to learn relatively simple be- 1211

haviors exhibited by the test subject in these vignettes, without 1212

the TBI context identification feature. The basic objective of 1213

TSs 1 and 2 was to evaluate the ability of a standalone FAM 1214

to learn human-performed actions in a simple game before 1215

applying them to a more complex game. In TSs 1 and 2, atomic 1216

actions are represented by directional choices: either left, right, 1217

up, or down. These directions are also representative of the 1218

entire action space of the behavior, as no other actions are 1219

permitted within the maze. In vignettes A and B, all possible 1220

contexts that may provide motivation for each action are ig- 1221

nored during training. For instance, the motivation of going left 1222

because the goal state is in that direction is considered to be 1223

identical to the motivation of going left simply because that is 1224

the best alternative. Because of this, contexts behind the selec- 1225

tion of particular moves by the test subjects were not considered 1226

in these two testing scenarios. We should note, however, that 1227

contexts still exist on the part of the agent that moves in the 1228

simulation. It is just that they are not considered in the training. 1229

In TSs 3 and 4, subjects Alpha, Charlie, and Delta performed 1230

the more complex activities related to vignettes C and D, 1231

respectively: participating in hands of Texas Hold’em. The 1232

objective of TSs 3 and 4 was to evaluate the ability of a 1233

standalone FAM system to learn the actions and play them back 1234

in a simulated game, regardless of the underlying contexts. The 1235

learning poker agent merely learned to map the game conditions 1236

(the environment) to the actions taken by the test subjects. 1237

Comparison of the results of TSs 3 and 4 later to those of TSs 5 1238

and 6 would, furthermore, provide an indication of the value of 1239

learning to predict the underlying contexts rather than merely 1240

the actions. Vignettes C and D involve reasoning about several 1241

observations, where each may have a significant impact on the 1242

subject’s eventual decision. Furthermore, each action taken by 1243

the subject may be the result of complex motivations, as would 1244

be appropriately defined in a context. For instance, a raise or a 1245

bet resulting from the action prescribed in one context may be 1246

caused by a different reason than it would in another context. 1247

TSs 3 and 4, however, intentionally ignore this fact. When a 1248

player makes an action, it is presented to FAM as that action, 1249

regardless of any context that may be behind it. Because of this, 1250

these tests mirror those of TSs 1 and 2, but with significantly 1251

more complex behaviors. 1252

TSs 5 and 6 also employ vignettes C and D, respectively, 1253

and were executed by subjects Alpha, Charlie, and Delta. By 1254

contrast, TSs 5 and 6 consider the context of each subject 1255

action prior to creating a training pattern for the neural net- 1256

work. Before running TSs 5 and 6, a set of contexts was 1257

developed for both vignettes C and D in an effort to capture 1258

all possible motivations for each action. During training, the 1259

subject’s action at each decision point is first examined by a 1260

TBI engine to infer a context for that point. In TS 5, vignette C 1261

is reused, and FAMTILE attempts to learn subject actions 1262

just as FAM attempted to do in TS 3. It is hypothesized that 1263
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the representation of the subjects’ actions as inferred contexts1264

can help the network to more effectively make finer clusters1265

representing more closely related patterns, thereby increasing1266

the predictive accuracy of the system. For the FAM within1267

FAMTILE, just as in TSs 3 and 4, the actions of the observed1268

human performer (the subject) are presented as output patterns,1269

regardless of the motivation behind the action.1270

A. Evaluation Procedure1271

The evaluation of the FAM learning process for TSs 3 and 41272

was done as presented here.1273

• The entire observation sequence gathered from subject i is1274

used to generate a set of training patterns—no validation1275

set is generated.1276

• FAM is trained with a set of patterns and learns a mapping1277

between observation and action.1278

• FAM replaces the test subject and is presented with various1279

decision points as the game progresses.1280

• For each decision cue presented by the simulation, FAM1281

predicts an action based on what it learned.1282

• That action is then executed in the simulation, and the1283

vignette continues.1284

• The overall performance of both subject i and FAM is1285

compared based on the metrics collected throughout the1286

execution of the scenario.1287

When separately testing FAM (TSs 3 and 4), the network is1288

trained with the subject’s action being presented at its output.1289

For FAMTILE (TSs 5 and 6), the actions of the subject are first1290

translated to an inferred context (by the TBI) for each decision1291

point, and a representation of that context is presented to the1292

FAM network within FAMTILE. After the training of each1293

system was completed, the simulation was run again. This time,1294

each decision cue was presented to the newly trained poker1295

agent. Based on its knowledge, then, the poker agent running1296

FAMTILE predicts a context, and the actions associated with1297

that context were executed. In contrast, the standalone FAM1298

produces only a predicted action. Six steps for testing the full1299

FAMTILE system are given here.1300

1) The entire observation sequence gathered from subject1301

i is used to generate a set of training patterns. Both1302

the training and validation sets are taken from these1303

observations.1304

2) FAMTILE is trained with the complete set of patterns1305

and generates a mapping between the observation and the1306

context.1307

3) FAMTILE takes the place of the subject within the simu-1308

lation and executes the appropriate vignette.1309

4) For each decision cue presented by the simulation,1310

FAMTILE predicts a context.1311

5) The identified context provides an appropriate action that1312

is then executed. The vignette continues.1313

6) The overall behaviors of both subject i and FAMTILE are1314

compared based on the metrics collected throughout the1315

execution of the vignette.1316

For each scenario, the following FAM parameters were held1317

constant:1318

• ε = 0.00001;1319

• βa = βb = 1;1320

• ρb = 1.1321

TABLE III
SUMMARIZED RESULTS FOR SCENARIO 1

The only parameter that was modified during the testing phase 1322

was the baseline vigilance ρa. This parameter has a direct effect 1323

on the granularity of the clusters generated in the ARTa module. 1324

These clusters represent groups of input patterns presented to 1325

ARTa, where each pattern maps to the same output pattern 1326

(either an action as in TSs 1, 2, 3 and 4, or a context as in TSs 5 1327

and 6) and is closely matched with respect to its individual field. 1328

The baseline vigilance parameter ρa affects this granularity 1329

by raising the vigilance parameter, which is responsible for 1330

rejecting the addition of new input patterns to a certain cluster 1331

if it fails to match a certain criteria. This change ultimately 1332

increases the number of input pattern clusters created in ARTa 1333

by decreasing their overall size (and inclusiveness). This effect 1334

is quantitatively illustrated in the succeeding sections. 1335

B. TS 1 Results 1336

Essentially, the task for FAM in this TS is to create a mapping 1337

between the maze topology and a predicted direction for the test 1338

subject facing that situation: either left, right, up, or down. 1339

The intent of vignette A is to create an environment where 1340

the actions of the subject are closely tied to the primary goals 1341

of the behavior. In this vignette, the subject makes only a single 1342

move in response to being told where and how far away the 1343

goal position is. Each atomic move, therefore, is made in direct 1344

accordance with the objective of reaching the goal. In the next 1345

few vignettes, the behavior required becomes increasingly com- 1346

plex, and the relationship between the atomic actions required 1347

by the subject consequently become less dependent on the 1348

overall objective and more dependent on the context in which 1349

the subject is operating. 1350

The testing proceeded in five steps. 1351

1) Randomize the order of the 1000 training points. 1352

2) Choose 900 of the 1000 points at random to train the 1353

neural network; use the final 100 points for the valida- 1354

tion set. 1355

3) Train the neural network using the 900 chosen training 1356

points. 1357

4) Test the neural network using the remaining 100 points. 1358

5) Record the number of correct predictions made out of 1359

100 testing patterns. 1360

Table III displays the results for each subject, including the 1361

sample mean predictive accuracy µ and standard deviation σ. 1362

A 2-tailed t-test was used on each set of data to validate that 1363

the computed sample mean µ for each subject approaches the 1364

actual mean µ. Using an α value of 0.01, the test computed a 1365

99% confidence interval for the actual mean. 1366

As expected, FAM is able to successfully learn the movement 1367

patterns for each of the three subjects. Success, here, is defined 1368

as better than random. A random guess at the subject’s action 1369

for vignette A would yield, on average, 25% predictive accu- 1370

racy (because there are four possible actions). As a qualitative 1371
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TABLE IV
SUMMARIZED RESULTS FOR TS 2

TABLE V
AVERAGE PREDICTIVE ACCURACY FOR TS 3 USING OPTIMAL ρa VALUES

comparison, consider the accuracies achieved by each subject.1372

For subject Alpha, the network was able to predict, on average,1373

almost 95 of the 100 testing patterns. Even for the worst cased1374

subject (TS 3), FAM was able to predict nearly 81% of the1375

testing patterns.1376

The purpose is for these results to serve as a baseline to1377

evaluate FAM (and ultimately FAMTILE) and examine how1378

this notion of context affects their predictive accuracy.1379

C. TS 2 Results1380

TS 2 was executed in the same manner as TS 1, and the same1381

three subjects were used. Within this scenario, each subject1382

makes consecutive moves within a 10 × 10 maze, with the1383

board and goal positions resetting each time the subject reaches1384

the goal. The scenario ends when the subject has generated1385

1000 training points—each training point represents a specific1386

maze state and the action the subject makes in response to that1387

state. Those points were used to train and evaluate the neural1388

network. Table IV displays the results of the 1000 run sets for1389

each subject.1390

In this scenario, FAM was able to adequately learn the1391

movement patterns for each of the three subjects. Furthermore,1392

the predictive accuracy significantly varied across subjects, just1393

as it had in scenario 1. FAM achieved a predictive accuracy of1394

nearly 93 of 100 for subject Alpha versus 84.5 and 85.6 for the1395

other two.1396

D. TS 3 Results1397

In vignette C, each of three test subjects is placed at a1398

simulated Texas Hold’em game with seven computer-generated1399

opponents. As expected, the predictive accuracy of FAM signif-1400

icantly degraded when tested using vignette C as a result of the1401

greater complexity of the problem. By the numbers, the network1402

achieved best-case predictive accuracies of 75.0, 68.5, and 75.61403

for each player versus 92.5, 84.5, and 85.6 for TS 2, respectively1404

(see Table V).1405

Comparing the predictive accuracies of FAM on these two1406

subjects for TSs 2 and 3, there is a 17.5% decrease in predictive1407

accuracy for subject Alpha and a 17.1% decrease for subject1408

Delta. This is a sharp contrast to the statistically insignifi-1409

cant performance difference between TSs 2 and 1, where the1410

network’s predictive accuracy changed to 2.2% and 2.8% for1411

subjects Alpha and Delta, respectively. These results confirm 1412

that the poker environment of vignette C is much more complex 1413

and therefore harder for FAM to learn versus that of the simpler 1414

maze vignettes. What this means in terms of the network itself 1415

is that FAM had a more difficult time effectively creating 1416

clusters with similar data points that mapped to the output 1417

patterns representing correct predictions of the subject’s action. 1418

An interesting result of this test was the sharp contrast in 1419

the predictive accuracy of FAM for subject Delta versus the 1420

other two subjects. As previously reported, FAM was only able 1421

to predict 68.54% of subject Delta’s actions versus 75.04 and 1422

75.56% for the other two subjects. One hypothesis as to this 1423

discrepancy is the difference in skill between subject Delta and 1424

subjects Alpha and Charlie. In Texas Hold’em, proper play 1425

before the flop is both the easiest piece of strategy to learn 1426

and the most crucial [69]. Strategy after this round becomes 1427

much more complex because of the explosion of information 1428

present with community cards on the board. Because of this, 1429

Limit Hold’em play before the flop round of betting tends 1430

to be somewhat mechanical among experienced players. This 1431

is supported by the data on subjects Alpha and Charlie, who 1432

shared similar experiences and read much of the same literature. 1433

Subject Delta (the novice player as previously described), on 1434

the other hand, has much less experience; thus, her play is likely 1435

to be more erratic and, therefore, less predictable. However, a 1436

similar drop-off between subject Delta versus subjects Alpha 1437

and Charlie is present in the results reported in scenario 1 1438

(although not in scenario 2). Because of this, another hypothesis 1439

for the change in predictive accuracies is the level of attention 1440

Delta paid to the exercise for vignettes A and C. Since the 1441

participants did not execute each vignette in sequence (and 1442

was not monitored during the exercises), it is possible that 1443

Delta simply was not paying full attention during the exercises. 1444

This hypothesis is bolstered by the more reasonable results of 1445

scenario 2, where the decision points were much more straight- 1446

forward (navigating an entire maze versus simply making a 1447

single decision of direction). 1448

E. TS 4 Results 1449

In TS 4, the predictive accuracies for FAM were collected 1450

and analyzed for vignette D. Just as vignette C, this vignette 1451

is set at the poker table with seven computer-generated agents 1452

playing against the subject in games of Texas Hold’em. Here, 1453

however, the subject’s decision points are not limited to the first 1454

round of action. Instead, a series of entire hands are carried out 1455

to their completion: if a subject folds, a new hand is dealt; if 1456

a subject raises, the opponents accordingly react to that raise; 1457

a flop, turn, and river are dealt; and betting rounds follow 1458

just as in an actual hand. The subject is also given a stack of 1459

100 “chips” that is maintained throughout the vignette. In this 1460

fourth and final evaluation of the FAM, we continue to examine 1461

its ability to learn subject actions as a function of his cards, his 1462

position at the table, and the betting action. 1463

Once again, the increase in complexity of vignette D com- 1464

pared to vignette C resulted in further erosion in the FAM’s 1465

predictive accuracy. The best-case accuracies of 55.32, 58.95, 1466

and 58.12 (see Table VI) are an average of more than 20% 1467

worse than those of scenario 3, which is nearly twice the 1468

decrease observed between vignette C and the maze scenarios. 1469
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TABLE VI
AVERAGE PREDICTIVE ACCURACY FOR TS 4 USING OPTIMAL ρa VALUES

TABLE VII
SUMMARIZED RESULTS FOR SCENARIOS 3 AND 5

It was observed in TS 3 that FAM significantly performed1470

worse on Delta than on the other two experts. Furthermore, it1471

was noted that Delta had several years fewer experience than1472

the other two, which possibly affected the predictability and1473

consistency of the actions.1474

The complexity of this scenario, however, seems to have1475

neutralized this effect. In fact, FAM was slightly more effective1476

in the best case at predicting expert Delta’s actions than those1477

of the other two experts. As it turns out, Charlie (who did not1478

participate in vignette C or the maze vignettes) had comparable1479

experience as expert Alpha.1480

F. TS 5 Results1481

The objective for TS 5 is to evaluate FAMTILE’s ability1482

to predict both the subject’s inferred active context and his1483

resultant action. Vignette C is used for this TS, which is the1484

same one used to evaluate FAM in testing scenario 3. Because1485

of this, the results of TS 3 serve as a baseline performance1486

metric for the results achieved here. Unlike FAM, however,1487

FAMTILE instead attempts to predict the subject’s inferred1488

active context. In order to make a comparison between FAM1489

and FAMTILE, the predicted contexts of FAMTILE must then1490

be converted to a predicted action for the subject, using the1491

contents of the predefined context template. Because FAM does1492

not make context predictions, this determination is necessary to1493

compare the predictive accuracies of the two learning systems.1494

The results of scenario 5 are presented in Table VII (represented1495

by µ1), along with those from scenario 3 (represented by µ2),1496

using 900 training patterns.1497

There are several interesting things to note from these re-1498

sults. In terms of the primary objectives of this research, the1499

numbers in the third column are the most important—how well1500

does FAMTILE predict the inferred context of the subject? As1501

Table VII illustrates, these predictive accuracies of the subject’s1502

action for FAM and FAMTILE are nearly identical for each1503

batch of runs and each subject. In the best case, for subject1504

Alpha with 900 training patterns, FAMTILE outperformed1505

FAM with an average of 75.63 correct predictions versus 75.041506

for FAM. In the worst case, for subject Delta, FAM narrowly1507

outperformed FAMTILE with an average of 75.56 correct pre-1508

dictions versus 75.37 for FAMTILE. However, neither of these1509

margins is statistically significant.1510

TABLE VIII
AVERAGE CONTEXT-PREDICTIVE ACCURACY FOR TS 5

TABLE IX
SUMMARIZED RESULTS FOR SCENARIOS 4 AND 6

In addition, FAMTILE is able to accurately predict the 1511

subject’s active context an average of 67.71, 59.98, and 66.26 1512

times for each of the three subjects observed, respectively, 1513

at optimum values for ρa (see Table VIII). Comparing these 1514

accuracies with those of FAM for predicting subject actions, we 1515

note that FAMTILE is an average of only 11.52% less effective 1516

at predicting contexts than FAM is at predicting actions. 1517

The fact that FAMTILE is able to generate a competitive 1518

degree of context-predicting accuracy without disrupting the 1519

ability of FAM is significant. In effect, therefore, we have cre- 1520

ated a system that adds the ability to predict context transitions 1521

to a neural network without significantly affecting its ability to 1522

predict simple actions. 1523

G. TS 6 Results 1524

In scenario 6, predictive accuracies for FAMTILE are col- 1525

lected and analyzed for vignette D as they were for FAM 1526

in scenario 4. Table IX summarizes the results of a 2-tailed 1527

t-test on the best-case predictive accuracy means achieved in 1528

scenarios 4 (µ2) and 6 (µ1) for each subject. In the table, the 1529

values from scenarios 3 and 5 are annotated in parentheses. 1530

The predictive accuracy of FAMTILE for predicting the 1531

subject’s inferred context also considerably decreased from the 1532

values achieved in scenario 5. Whereas FAMTILE predicted 1533

contexts at rates of 67.71, 59.98, and 66.26 for vignette C, 1534

those accuracies dropped by an average of more than 28% 1535

across the two subjects who then also participated in vignette D. 1536

One significant reason for this was the increase in the number 1537

of contexts. This number doubled from 12 to 24 contexts for 1538

vignette D, because two new actions needed to be accounted for 1539

(i.e., bet and check), along with the representation of contexts 1540

potentially present after the preflop round of betting. Note that, 1541

with 24 contexts, a random guess of the inferred active context 1542

could be expected to be correct slightly more than 4% of the 1543

time, which is ten times less than the accuracy achieved by 1544

FAMTILE. 1545

Furthermore, vignette D requires the player to reason about 1546

entirely new and more complex situations than those faced in 1547

vignette C. In addition to his/her hole cards, the player must 1548

also consider not only the community cards but also the action 1549
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of previous betting rounds and the possible responses of each1550

opponent in response to a particular action.1551

VI. CONCLUSION AND LESSONS LEARNED1552

Based on the results tabulated in the previous section, it is1553

concluded that FAMTILE is an adequate technique for learning1554

high-level behaviors and offers several promising character-1555

istics that can be exploited in future research. Because it is1556

able to learn low-level contexts from human actors without1557

adversely affecting the clustering ability of FAM, we feel that1558

the FAMTILE system provides a significant tool for learning in1559

systems where it is desirable to gain a perspective of why the1560

human actor is doing what he/she is doing.1561

The results of the two maze scenarios provide a good indi-1562

cation as to FAM’s ability to predict human responses to an1563

observation. In TS 1, the network is able to correctly predict a1564

subject’s movement at an average of 86% on the validation set,1565

achieving nearly a 95% average for one of the three subjects.1566

This scenario included input training patterns with 27 fields and1567

four possible output patterns. The second maze TS expanded1568

the subject’s viewing range, more than tripling the number of1569

input-pattern fields to 88 (92 if the subject’s previous action was1570

recorded and considered). Nevertheless, FAM is able to predict1571

85% of the validation set for the three subjects, increasing to1572

nearly 87% when the subject’s previous action is considered.1573

While these are impressive numbers for predicting three1574

different subject’s actions, they only speak to the successes of1575

FAM and do not address the capabilities of FAMTILE. These1576

scenarios were executed and reported, for the most part, to1577

justify the use of FAM for doing the low-level learning task.1578

Had these evaluations been a failure, a different learning system1579

would have had to be selected—one that performed better at1580

predicting actions within these training scenarios.1581

As described in Sections IV and V, FAMTILE requires the1582

use of a completely separate TBI module that encodes a priori1583

knowledge about the scenario within its context templates,1584

whereas FAM itself requires no such input. FAMTILE fails1585

to produce a worthwhile increase in predictive performance,1586

therefore negating our hypothesis. A separate set of tests was1587

run to evaluate FAMTILE’s ability to correctly predict the in-1588

ferred expert context for each decision point. While these tests1589

resulted in lower predictive accuracies—certainly expected be-1590

cause the neural network must choose between 12 possible out-1591

put patterns, instead of only three, when predicting actions—the1592

results were promising. Using 900 training patterns, FAMTILE1593

is able to correctly predict an average of 64.77 contexts out of a1594

possible 100 (64.77%) across the three experts. As reported in1595

Section VI, FAMTILE’s predictive accuracy for contexts is only1596

around 11% worse than its accuracy for actions. This accuracy1597

is achieved, furthermore, without affecting the accuracy of1598

the network in predicting the expert’s overall action. What1599

this means, then, is that FAMTILE can provide a significant1600

advantage over other supervised learning algorithms in situa-1601

tions where the identification of expert context provides more1602

important or additionally worthwhile information versus simply1603

being able to predict low-level action. In a more robust poker1604

simulation, for example, the ability of FAMTILE to identify1605

context could drive additional behaviors, aside from the simple1606

game action, such as additional “table talk” to project a strong1607

image while bluffing, voice intonation, etc. Generally, we feel 1608

that the FAMTILE system is most useful for learning tasks 1609

where three conditions hold. 1610

1) The behavior satisfies the characteristics of high-level 1611

tactical behavior, as defined in Section I. 1612

2) The user is interested in creating models of the expert’s 1613

behavior and is more interested in his resultant intentions 1614

and motivations than the actions observed at the lowest 1615

level. 1616

3) The expert’s ultimate action is more closely tied to his 1617

low-level behavior than to the raw observation presented 1618

at each decision point. 1619

This difference in difficulty between the maze and the poker 1620

vignettes seemed to create a good set of conditions for evaluat- 1621

ing both FAM and FAMTILE. The first human-prediction task 1622

(the maze) was found to be relatively easy yet reflected some 1623

variability among the three subjects observed. The second two 1624

TSs introduced the poker scenario. These vignettes introduce a 1625

learning challenge that, while containing a comparable number 1626

of input-pattern fields and output possibilities, proved to be a 1627

more difficult task for both FAM and FAMTILE. 1628

FAMTILE requires the use of a separate TBI module that 1629

encodes a priori knowledge about the scenario within its con- 1630

text templates, whereas FAM itself requires no such input. 1631

FAMTILE fails to produce a worthwhile increase in predictive 1632

performance. 1633

The central assumption made for this research was that high- 1634

level behavior can be represented by a sequence of lower level 1635

behaviors that can be modeled by CxBR contexts. However, 1636

the trick then becomes defining and partitioning each context 1637

of a behavior in such a manner that they are truly atomic and 1638

identifiable, independent of the specific subject being observed. 1639

For example, consider the RaiseWithStrongButVulnerableHand 1640

context used in vignette D. This context was modeled to 1641

represent cases where the subject believes not only that he has 1642

the best hand at the moment but also that his opponents can 1643

easily draw cards to beat him. 1644

This context raises an interesting question: What if the 1645

subject does not actually recognize this? Obviously, then, the 1646

templates must be defined such that this context is not inferred. 1647

However, what if there are no contexts that accurately represent 1648

the low-level motivation and behavior of the human subject? 1649

High-level behaviors whose specifics are heavily dependent 1650

on human preference and expertise are equally difficult to rep- 1651

resent. While a significant amount of a priori knowledge was 1652

encoded into the context templates used for scenarios 3 and 4, 1653

that knowledge does not represent the full range of motivations 1654

and contexts that constitute the entire task of playing Hold’em 1655

Poker. This is because these contexts are so dependent on the 1656

tendencies of the individual subject. Some players may employ 1657

poor strategies, for instance, that are not represented as a high- 1658

level context template. These absences can ultimately reduce 1659

the predictive accuracy of the FAMTILE system. 1660

However, that is not to say that these assumptions serve only 1661

to doom the chances of success for our approach. On the con- 1662

trary, these assumptions provide a means for motivating the di- 1663

rections that research in human behavior representation should 1664

progress. If we choose to learn a task where the modeling 1665

architecture, subject tendencies, and context topologies are all 1666

known, it is likely that the task modeled is too simple and not 1667
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worth modeling. Texas Hold’em Poker, on the other hand, is a1668

highly complex game, and the number of techniques, strategies,1669

and styles documented and used by advanced players suggest1670

that the game is as much of an art as it is a science.1671
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Discovery of High-Level Behavior From Observation
of Human Performance in a Strategic Game
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2

Brian S. Stensrud, Member, IEEE, and Avelino J. Gonzalez, Fellow, IEEE3

Abstract—This paper explores the issues faced in creating a sys-4
tem that can learn tactical human behavior merely by observing5
a human perform the behavior in a simulation. More specifically,6
this paper describes a technique based on fuzzy ARTMAP (FAM)7
neural networks to discover the criteria that cause a transition8
between contexts during a strategic game simulation. The ap-9
proach depends on existing context templates that can identify10
the high-level action of the human, given a description of the11
situation along with his action. The learning task then becomes the12
identification and representation of the context sequence executed13
by the human. In this paper, we present the FAM/Template-based14
Interpretation Learning Engine (FAMTILE). This system seeks to15
achieve this learning task by constructing rules that govern the16
context transitions made by the human. To evaluate FAMTILE, six17
test scenarios were developed to achieve three distinct evaluation18
goals: 1) to assess the learning capabilities of FAM; 2) to evaluate19
the ability of FAMTILE to correctly predict human and context20
selections, given an observation; and 3) more fundamentally, to21
create a model of the human’s behavior that can perform the22
high-level task at a comparable level of proficiency.23

Index Terms—Context-Based Reasoning (CxBR), fuzzy24
ARTMAP (FAM), learning from observation, neural network,25
poker, template-based interpretation (TBI).26

I. INTRODUCTION27

L EARNING from observation of human behavior is a skill28

well mastered by human beings, even as young children.29

Although not all tasks can be fully learned by merely observing30

others perform (e.g., riding a bicycle and hitting a baseball),31

many tasks are, in fact, able to be learned by humans through32

observation (e.g., driving an automobile). In fact, it can be ar-33

gued that learning from observation shares some commonalities34

with experiential learning, in that the observer learns from the35

experience of others. This provides an interesting opportunity36

for the training of agents to perform humanlike tasks.37

There is and has been significant activity in the area of learn-38

ing from observation in the last several years. We cover that in39

Section II. This paper describes an investigation into learning40

the criteria for context transitions by observing a player in a41

computerized game of strategy. To better understand what we42

mean by a context and a context transition, we first present a43

brief description of Context-Based Reasoning (CxBR), which44

is an essential component of our approach.45
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A. CxBR and Tactical Missions 46

Webster’s dictionary defines context as “. . . the whole situa- 47

tion, background or environment relevant to some happening or 48

personality” [1]. CxBR, in turn, defines context as previously 49

mentioned, plus the knowledge and functionality for a context- 50

based agent to be able to appropriately act when in this context. 51

In other words, it contains what the agent needs in order to 52

know what to do when in this context. If an agent can identify 53

the context in which it finds itself, it needs only to use the 54

knowledge and functionality defined for that context in order 55

to properly “navigate” it (see [2] for a more detailed discussion 56

on CxBR). 57

CxBR contexts, in some ways, resemble hierarchical finite- 58

state machines. Indeed, CxBR contexts can be effectively rep- 59

resented by such structures, with contexts roughly equating 60

to states. However, the essential distinction is that contexts 61

in CxBR encompass a grouping of knowledge that is natural 62

(for humans) to a given situation—in effect, anything and 63

everything the agent might need to know while in that context. 64

This knowledge includes functional knowledge (e.g., how to 65

do something) as well as transitional knowledge, which allows 66

the agent to select the most applicable context in a constantly 67

changing environment. 68

CxBR is an organizational concept and not a language. 69

Contextual knowledge can take the form of one or more 70

functions, rules, neural networks, and simulations, or some 71

form of declarative knowledge. This can drastically prune the 72

search space when looking for relevant operators to address 73

a problem. Grouping knowledge in this fashion can also help 74

in identifying the CxBR context in which the agent finds itself 75

as the transition criteria are defined within each CxBR context 76

(hereinafter called contexts). Traditionally, the contexts have 77

been authored by a knowledge engineer (KE). However, recent 78

research has sought to semiautomatically or automatically build 79

these contexts with the help of knowledge acquisition tools [3] 80

or via machine learning [4], [5]. The work described in this 81

paper is a further effort in the latter approach. 82

Nevertheless, as the situation experienced by the agent 83

evolves through the natural course of the agent’s activity 84

(a game, a mission, a task, etc.), a new set of knowledge may 85

need to be brought to bear (“activated”) to successfully define 86

and control the behavior of the agent in this new situation. 87

Therefore, recognizing what causes a situation in the environ- 88

ment to change and react to that change by activating the newly 89

appropriate context is not only important but also essential if 90

a system is to correctly perform a behavior. We refer to the 91

criteria that trigger context transitions as the context transition 92

criteria. Learning these transition criteria through observation 93

of human performance is the specific objective of the work 94

described in this paper. 95

1083-4419/$25.00 © 2008 IEEE
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We limit our work to problems that involve tactical behav-96

iors. This includes military missions but could also involve97

team or individual games and other nonconflictive situations98

where tactical behavior is employed (e.g., driving a car to the99

airport). The term tactical behavior, which is often reserved100

for behaviors involving military operations, is defined here to101

denote behaviors with four characteristics.102

1) Having a well-defined goal or mission.103

2) Being characterized by planning and/or maneuvering.104

3) Not being well defined as to their execution sequence.105

Thus, their characteristics may vary greatly across indi-106

viduals.107

4) Needing to intelligently react to unforeseen events or to108

the actions of others.109

B. High-Level Behaviors110

The overall behaviors learned by our system are considered111

to be high-level behaviors. The precise definition of a high-level112

behavior is usually omitted in the relevant literature in spite of113

the fact that their implementation is a primary focus of the work114

described therein. Jones et al. [6] and Jones and Laird [7] refer115

to high-level behavior when describing the TacAir-Soar system116

but never explicitly define the term. Likewise, the work reported117

by Patterson et al. [8] describes a method for learning high-level118

behavior by examining low-level sensors but also stops short119

of providing a definition of high-level behavior. A common120

thread found in all of the literature, however, is that the presence121

of subbehaviors composes the high-level behavior described.122

In the paper by Jones et al. [6], the behavior of piloting a123

fixed-wing aircraft is described in terms of the composition124

of its lower level functionality, such as communication and125

maneuvering the plane.126

In the context of this research, we define high-level behaviors127

as behaviors that can be represented by a sequence of simpler128

identifiable subbehaviors known as low-level behaviors. A low-129

level behavior is considered to be atomic if it cannot be decom-130

posed any further. Otherwise, between high-level behaviors and131

atomic behaviors at each extreme, there can be several layers132

of varying levels of behaviors. For example, in the domain of133

automobile driving, a high-level behavior could be “driving an134

automobile.” Conversely, “pressing down on the accelerator”135

is considered an atomic behavior. In between, there are such136

behaviors as “managing traffic lights,” “driving in urban areas”137

(which could indeed include managing traffic lights), “passing,”138

and “turning left.”139

If it is assumed that each low-level behavior (atomic or not)140

can be modeled and identified a priori, learning is then the141

process of identifying and remembering the cues (environmen-142

tal or otherwise) that trigger the transitions between low-level143

behaviors. The sequence of these low-level behaviors then com-144

poses the high-level behaviors executed by the observed human.145

We are, furthermore, interested in a class of low-level be-146

haviors that 1) can be identified during observation; 2) exist147

a priori and need not be learned (only recognized); 3) no two148

such behaviors can be executed at the same time; and 4) are149

known to be characteristic of the higher level behavior that we150

do wish to learn to compose.151

Behavior Bi, therefore, is learned by determining how152

our observed human decides to make use of subbehaviors153

Fig. 1. Learning behaviors by mapping relationships between known
subbehaviors.

b0, b1, . . . , bk that compose Bi. Thus, behavior Bi is con- 154

sidered the high-level behavior. The predefined contexts that 155

compose that behavior therefore reflect the low-level behaviors 156

b0, b1, . . . , bk that together compose Bi. 157

C. Example of High-Level Behaviors 158

For clarification on our definition of high-level and low-level 159

behaviors, consider the example where behaviors X , Y , and Z 160

are each composed of a set of known lower level behaviors a, b, 161

and c. The different sequences in which a, b, and c are executed 162

in each high-level behavior serves to distinguish them from 163

each other. Our system learns how a human executes behaviors 164

X , Y , and Z (individually) by creating a mapping between the 165

observations of the human’s actions and the sequence of the 166

subbehaviors (a, b, and c) that comprise each behavior X , Y , 167

and Z. Assuming that this task is successfully done, an even 168

higher level behavior A can thereafter be learned in the same 169

manner, provided that its execution is composed of a sequence 170

of behaviors X , Y , and Z. A diagram illustrating this point is 171

provided in Fig. 1. 172

Behaviors a, b, and c are considered to be low-level (in this 173

case atomic) behaviors with respect to behaviors X , Y , and Z. 174

In turn, X , Y , and Z are considered as (nonatomic) low-level 175

behaviors with respect to A. 176

These types of situations are easily found when we consider 177

tactical human behavior. The task of flying an airplane, as 178

another example, can be broken down into, in the most extreme 179

case, trivial atomic actions—pushing buttons, guiding a control 180

stick in a certain direction, pushing or pulling on the throttle 181

knob, etc. However, flying an airplane is certainly NOT a trivial 182

task. The real knowledge is contained in the processes involved 183

in deciding when to push a particular button, when to pull back 184

on the stick, etc., and in what sequence, depending on the situ- 185

ation at hand. The knowledge is so complex, in fact, that there 186

are hierarchies of subbehaviors that play a role in representing 187

the behavior of flying a plane. Learning to fly is not achieved by 188

learning “buttonology” or stick-maneuvering techniques per se. 189
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It is achieved by learning to execute procedures (e.g., landing,190

taking off, and maintaining a heading) that involve knowing191

when to push what button and when and how to maneuver the192

control stick and/or the throttle.193

The argument posed by this example is that, if given the low-194

level (atomic or not) functionality used by the human, learning195

his behavior becomes an exercise in identifying a mapping196

between environmental and situational cues, which we will call197

expert stimuli, and the low-level function or behavior that the198

human chooses in response to that cue.199

D. Observations of Human Performance200

In this paper, we describe a learning system that gathers a201

sequence of observations made of a human performing a high-202

level behavior. By examining the observations, our system aims203

to correctly identify the low-level behaviors being executed204

without feedback from the human and map them to the stimuli205

within the observations that prompted their selection. With the206

help of the CxBR modeling paradigm, this system can then207

be used to develop intelligent models of the learned high-level208

behavior.209

Using CxBR, low-level behaviors are represented as individ-210

ual contexts, whereas the highest level behavior to be learned211

is considered to be a CxBR mission. Contexts may contain one212

and only one behavior (atomic or otherwise) or be composed213

of several behaviors (atomic, nonatomic, or a combination214

thereof); which of these is true depends on the context. Some215

contexts permit only one action to be performed by one atomic216

behavior. Other situations, however, call for a context that217

includes more than one behavior although not concurrently.218

We define a single observation to be a point acquisition219

of time-dependent inputs used to infer assertions about an220

agent’s environment. We can use time to differentiate and make221

relationships between two otherwise independent observations.222

In the following equation, we define an observation O(t) that223

occurred at time t:224

O(t) = 〈i1, i2,, i3, . . . , in〉.

Vector O(t) contains fields that represent each input that was225

introduced to the observer at time t. An observation sequence,226

therefore, can be considered to be the set of all observations227

occurring within an arbitrary period of time. The assumption228

made here is that observations within a time interval occur in229

discrete points in time rather than continuously. Thus230

O{t0 − tn} = {O{t0}, O{t1}, . . . , O{tn}} .

As it pertains to our investigation, a single observation includes231

information about the current environment as well as the current232

actions of the human. This is critical, because we are attempting233

to draw a cause–effect relationship between occurrences in the234

environment and the actions of the observed human. For this235

research, the learning system develops tactical knowledge from236

an observation sequence by creating a mapping between an237

observation pattern and the observed human response. How-238

ever, it is necessary to process these observations and, from239

them, learn the knowledge that produces these relationships240

between the environment and the reaction(s) of the observed241

human. If we consider these observations as a set of training242

examples, learning then can be used to generate a knowledge243

base about actions within the given scenario. Khardon [9] infers 244

a similar definition in his discussion on supervised learning. 245

In our case, however, the learning is to be unsupervised at 246

the input. The observed human does not at all interact with 247

the agent, and learning is done by merely inferring how the 248

human has reacted to his observations. Nevertheless, we define 249

learning from observation as follows: 250

The use of data acquired, through observation, to as- 251

sert knowledge from which a human’s behavior can be 252

intimated. 253

We can use our earlier definition of observation to formalize 254

this definition. To do this, we consider the learning process for 255

human E as some function λ of a given observation sequence 256

OE , i.e., 257

λ{OE} = AE |AE = {A1, A2, . . . , Aw}.

In the preceding equation, the learning algorithm designated 258

by λ operates on an arbitrary observation sequence OE and 259

outputs a set of assertions AE that, in some fashion, describe 260

the behavior that has been observed. As the abstraction of 261

“learning” does not imply a restriction in the format of what 262

is learned, these assertions are likewise free to take on various 263

forms: equalities, thresholds, rules, etc. 264

The potential utility of such a system is twofold. On one 265

hand, the time required to develop acceptable representations 266

of tactical behavior for such agents could be significantly 267

reduced. Instead of producing a complete high-level behavior 268

model by hand, this system could automatically generate what 269

is arguably the most difficult portion of the knowledge: the 270

context transitions. 271

The second benefit includes the correctness of the knowl- 272

edge learned. Eliminating a middle person in the development 273

process would conceivably eliminate a source of errors. Fur- 274

thermore, humans who perform their task with a high degree 275

of proficiency often cannot articulate their knowledge to a third 276

party [10]. A model constructed using a human’s introspective 277

explanation can therefore suffer from incompleteness (or even 278

incorrectness) based on this shortcoming. In allowing a system 279

to automatically learn this behavior by observing a human in 280

action, the intermediate step of asking the human to articulate 281

his knowledge is eliminated. 282

There are, however, some potential caveats in our approach. 283

One is that all contexts and corresponding templates used must 284

be authored a priori. This is one significant disadvantage faced 285

by a future developer of an application using this approach. 286

While this is part of the larger problem of knowledge acqui- 287

sition and machine learning, it nevertheless is quite pertinent 288

to our approach. This paper can indeed serve to reduce the 289

human effort by automatically learning the context transitions. 290

However, significant manual labor is still necessary to prepare 291

the table, so to speak, in order to learn these (e.g., prepare the 292

simulation, run the human subjects, and collect all the observed 293

data). Furthermore, behaviors not predefined as templates can- 294

not be recognized and therefore cannot be learned. These issues 295

are further discussed in succeeding sections. 296

Before describing our work in greater detail, let us first 297

review the state of the art to see how our work relates to that 298

of others in the field. Given that our application is to poker, 299

we review some of the classic literature on board games and 300

computers. 301
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II. RELATED WORK302

Much research can be found in the literature describing learn-303

ing from observation. While some works address learning high-304

level behaviors, most focus on learning low-level behaviors.305

This section describes prior research related to our work.306

Board games and computers have a long history together,307

dating back from the works of Shannon [11], Turing [12], and308

Newell et al. [13]. Charness [14]–[16] studied bridge and chess309

to identify expertise and their relation to cognitive science. He310

and his colleagues more recently have used this platform to311

examine the effects of aging [17]. Certainly, a landmark in312

computer intelligence was achieved when Deep Blue beat chess313

Grand Master Garry Kasparov in a chess match in 1997 [18].314

This was preceded by important chess playing computers such315

as HITECH, MEPHISTO [19], and Deep Thought [20], which,316

prior to Deep Blue, were generally considered to be the best of317

the chess programs.318

Two early researchers of GO playing programs were Zobrist319

[21] and Ryder [22]. While their work met with partial success,320

the results of their work could not play as well as a human321

novice. Additional early work on GO was reported by Kierulf322

and Nievergelt [23], Kierulf [24], and Wilcox [25].323

More to the point, machine learning and board games also324

have a greatly intertwined history, dating back from Samuel’s325

seminal paper on learning to play checkers [26] and Waterman’s326

subsequent paper on learning heuristics in draw poker [27].327

These two seminal works pioneered the machine learning field.328

Michalski et al. appear to be the first to mention observational329

learning in [28]. Here, they associate learning from observation330

with unsupervised learning.331

In the neural network community, “learning through ob-332

servation” means that the training data are observations.333

Fernlund et al. [5] define learning from observation as “the334

adoption of behavior . . . through the use of data collected335

by means of observation.” A more descriptive definition de-336

scribes learning from observation as “inferring concepts by337

observation” [29]. Here, observation is defined as the act of338

collecting “characteristics of the relevant environment” [29].339

What an observer infers from these observations, however,340

is a far more complex matter, and so there must be a clear341

distinction between what is observed and what is inferred about342

a given environment. One cannot assume that what is reported343

by a human as “observed” constitutes knowledge that has not344

already been asserted based on his a priori knowledge about his345

task or scenario. The goal for our learning agent is to develop346

inferences about “what it sees” based on how a human reacts to347

his observations—not how the human reports them. Therefore,348

observation must be considered as it pertains to the agent—We349

want to record what the agent sees through the human’s eyes.350

The observations must not, however, include expressions of351

what the human may annotate or report about his environment.352

Sammut et al. [30] and Camacho [31] developed systems353

to observe a pilot’s behavior on a flight simulator and imple-354

mented the knowledge learned from observation in decision355

trees. A set of rules was developed as part of the learning356

process. As part of his work, Sammut coined the phrase “behav-357

ioral cloning” to reflect this approach. Sammut’s work involves358

learning rules to perform motor skills involved in flying an359

airplane. The resulting system learned to fly an airplane as if it360

were on autopilot in a very strictly defined flight plan. It did not 361

leave room for generalization. Isaac and Sammut’s subsequent 362

work [32] extended the previous work to incorporate significant 363

generalization, albeit in a still rather confined domain (maneu- 364

vering an aircraft through turbulence). 365

Sinai and Gonzalez [4] introduced a framework for learning 366

implicit human knowledge through observation of automobile 367

driving behavior within a simulation. Their work is quite rele- 368

vant to this research because of their attention to partitioning the 369

knowledge by situation (although not called contexts therein). 370

Our work presents almost the opposite approach, in that we 371

assume that the low-level behaviors such as those learned by 372

Sidani and Gonzalez’ system (denoted as primitive’ in their 373

paper) have already been defined a priori. This leaves the actual 374

situation identification knowledge to be learned through our 375

neural network approach. 376

Henninger [33] describes a neural-network-based system that 377

learns how to accurately predict the movement of vehicles 378

in a distributed simulation (ModSAF). Her model builds a 379

predictive model for tank actions by observing a nonhuman but 380

independent algorithm manipulate the tank agent in ModSAF. 381

Gerber [34] employs a template-based interpretation (TBI) en- 382

gine that predicts tank-position information by first selecting its 383

inferred behavioral context. TBI is a method of inferring tactical 384

intent and is likewise essential to our work. It is described 385

in Section III-A. While confined to tank-driving behaviors, 386

Gerber’s work is highly relevant to our research. He decom- 387

poses the behavior into a set of contexts, which are repre- 388

sented using TBI templates, and using a learning algorithm, 389

he attempts to optimize the identifying weights associated with 390

the templates. The data used in learning is collected from 391

observation of a human-controlled tank. By contrast, the work 392

described in this paper assumes an accurate definition of a set 393

of context templates and attempts to learn the cues that result in 394

a specific context selection. 395

Johnson et al. [35] describe a fuzzy ARTMAP (FAM)-based 396

system that allows computer-generated forces to gradually learn 397

behavior online during a real-time simulation. FAM is reported 398

to have several benefits, including relatively few parameters 399

and the ability to extract and easily explain the results of the 400

learning [36]. FAMs are also essential to our approach. 401

van Lent and Laird [37] outline the development of KnoMic, 402

a system that extracts knowledge from an expert through obser- 403

vation and then generalizes this knowledge in the form of rules 404

that can be used by an agent to perform a similar task to that of 405

the expert. Whereas Henninger’s and Sammut’s earlier work fo- 406

cused on learning atomic behaviors from observation, KnoMic 407

is assigned to learn how to execute specific and detailed tasks, 408

such as flying an airplane to a certain destination and in a certain 409

fashion. The authors refer to these types of tasks as performance 410

tasks. As follow-up research to van Lent’s KnoMic system, 411

Konik and Laird’s work [38] involves the learning of goal hier- 412

archies using inductive logic programming. In the observation 413

mode of this algorithm, the human is again asked to execute a 414

task while annotating goals that he/she has completed during 415

the task. The learning algorithm is then responsible for learning 416

the selection and termination conditions of each goal (when the 417

behavior to execute each goal should be turned on/off). Their 418

use of the human actor beyond demonstrating his skills on a 419

simulator makes their work fundamentally different from ours. 420
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Fernlund et al. [5] succeeded in building a system that421

learned both the low- and high-level behaviors involved in422

driving a car by observing a human drive a car simulator423

through a virtual city. Their work used genetic programming to424

learn individual contexts. Their system generalized quite well425

and required no intervention by the human actor in the process,426

beyond performing the behaviors.427

Schaal [39] makes a slight distinction between “learning428

from observation” and “imitation learning.” In most cases,429

learning systems for robots in manufacturing applications try430

to imitate the exact movement of the human, rather than learn a431

general behavior. This is typically because, in such applications,432

the objective of the robot is to imitate the human as closely as433

possible in a controlled environment.434

Walczak and Fishwick [40] describe a study to characterize435

human expertise by observing the move patterns of chess436

players. Based on the chunking theory of learning [41], they437

examine the records of games played by prominent chess mas-438

ters and a developing player, and compare the chunks learned439

by these individuals. Their primary objective is not to learn to440

play the game but to quantify and describe expertise in chess.441

Other related work reported in the literature includes that of442

Pomerlau et al. [42], Bentivegna and Atkeson [43], Moukas and443

Hayes [44], Yang and Asada [45], Floreano and Mondada [46],444

Pentland and Liu [47], Fogel et al. [48], Morrison [49], Crowe445

[50], Friedrich et al. [51], Kaiser and Dillman [52], Rajput et al.446

[53], Hieb et al. [54], Gingrich et al. [55], Hovland et al. [56],447

Kosuge et al. [57], Lee and Chen [58], [59], Khardon [9],448

Modjtahedzadeh and Hess [60], Fix and Armstrong [61], and449

Nechyba and Xu [62], [63]. Space limitations prohibit further450

discussion of these contributions.451

Our work differs from the aforementioned works in452

two ways.453

1) We specifically learn the context transitions that are used454

to link together low-level behaviors into one high-level455

behavior.456

2) We do not interrupt or otherwise consult with the human457

actor, before, during, or after the learning session. This458

has the advantage of being able to conceivably learn the459

behaviors of human actors who do not wish to cooperate460

with the process (e.g., an opposing team and military461

enemies). We discuss this in more detail in Section VI.462

The works closest to ours is that of Konik and Laird [38]463

and van Lent and Laird [37] in that they both learn high-level464

behaviors. However, consultation with the human actor appears465

to be essential in their approach. Our work represents a different466

approach to the work of Fernlund et al. [5]. Whereas they467

learn the low-level contexts as well as the transition rules, our468

work concentrates on learning the transition rules using a vastly469

different approach.470

III. OUR APPROACH TO LEARNING FROM OBSERVATION471

Here, we describe an algorithm that identifies low-level472

(possibly atomic) behaviors when executed by the human and473

creates a mapping between them and the observations that pre-474

cede them. The name of this algorithm is FAM/Template-based475

Interpretation Learning Engine (FAMTILE). However, brief476

descriptions of TBI and FAM neural networks are provided for477

the interested reader. Readers familiar with these techniques can 478

skip to Section III-C. 479

A. Template-Based Interpretation 480

TBI was conceived by Drewes [64] and later enhanced by 481

Gerber [34]. TBI infers tactical intent from observed atomic 482

actions and allows for an inference to be made about the low- 483

level sequence of actions executed by the human and observed 484

by our system. In TBI, contexts are represented by context tem- 485

plates or templates, which list the expectations of what a human 486

would have to do (in terms of atomic actions) when in the 487

process of carrying out the intended actions. By progressively 488

checking off as “done” the actions that are actually observed, a 489

clearer picture of the intentions of the observed actor comes 490

into focus. Within each template is a set of attributes that 491

indicate actions and conditions; each attribute within a template 492

is considered to be relevant to the context represented by that 493

template. TBI operates by associating a specific observation 494

or observation sequence to the attributes of each template to 495

determine which (if any) of the attributes are satisfied. TBI 496

continuously computes a cumulative score for each template 497

over time. This score is proportional to the number of attributes 498

of a template that are satisfied (Drewes called it “checked 499

off” in his dissertation [64]) and their respective weight. As 500

time passes and more observations are logged and compared 501

to the template’s attributes, the cumulative scores of those 502

templates that, in fact, reflect what is happening will tend to 503

rise, whereas those that are irrelevant will either remain low 504

or possibly decrease. At a certain point in time, the template 505

earning the highest score is flagged by the TBI engine as 506

having sufficient confidence that that context is indeed what the 507

observed performer is doing. This process resembles the game 508

of Bingo in many ways. A card is analogous to a template, and a 509

number call to an observation. When a threshold is reached in a 510

specific card (a horizontal, vertical, or diagonal line is checked), 511

success can be declared by yelling “Bingo.” 512

As an example, consider the tactical behavior of driving a car. 513

As a high-level behavior, driving includes several lower level 514

behaviors executed in support of the high-level task: stopping at 515

a red light, passing slower traffic, avoiding and being aware of 516

pedestrians, etc. Oftentimes, there are attributes and cues from 517

the driver and/or from the surrounding environment that can 518

indicate to an observer which atomic behavior is being executed 519

by the driver. For instance, a passenger does not need to ask the 520

driver to indicate when he’s attempting to pass a slower car, he 521

can simply look out the window—the driver has changed lanes 522

and increased his speed, the passed car is driving too slow, etc. 523

In TBI, we consider these cues to be the attributes of a 524

context and group them together within a context template. 525

These attributes are then assigned a weight indicating their 526

importance in identifying the context. Because the behavior ex- 527

pected within each context is known a priori, creating templates 528

with useful attributes is a reasonable task for a KE. 529

B. FAM Neural Networks 530

FAM is a neural-network clustering technique developed 531

at Boston University in the early 1990s. The network was 532

introduced by Carpenter et al. [36] and is described in detail by 533



6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008

Fig. 2. Block diagram of a FAM architecture [65].

Georgiopoulos and Christodoulou [65]. The goal behind this534

technique is to produce a neural network that is proficient at535

dealing with “misbehaved” batches of test patterns, i.e., patterns536

where a minority of the testing patterns share little in common537

with the majority used to train the neural network but are538

equally (if not more so) relevant.539

A block diagram of the FAM architecture is provided in540

Fig. 2. The ARTa and ARTb modules within FAM are responsi-541

ble for generating pattern templates that correspond to a certain542

pattern form, essentially dividing the pattern set into clusters.543

Each template created within the ARTa module represents an544

input-pattern type that corresponds to a specific output template545

created by the ARTb module. The Inner-ART module is then546

responsible for creating a many-to-one mapping between the547

templates within ARTa and those within ARTb.548

For example, consider a situation where a neural network549

is trained to recognize alphabetical letters when seen and, in550

response, produces a specific sequence of numbers based on the551

letter input. When training a FAM module, the ARTa module is552

responsible for learning to recognize each input letter, whereas553

the ARTb module is responsible for learning to recognize each554

output sequence. The Inner-ART module creates the map-555

ping between specific letters and their corresponding output556

sequence.557

C. Our Approach558

The FAMTILE algorithm is composed of two major parts:559

Part 1 involves inferring the context being experienced by the560

human actor being observed. Part 2 relates to mapping the con-561

text inferred in part 1 to the environment to determine the562

potential causes of a context transition. Part 1 employs the563

aforementioned TBI algorithm, whereas part 2 employs FAM564

neural networks. These two parts are independently discussed.565

After learning the set of conditions that trigger atomic be-566

havior transitions, a CxBR model that reflects the high-level567

behavior of the human observed during the simulation can568

then be constructed. This model contains both the low-level569

contextual knowledge developed a priori and the knowledge570

learned by this system that identifies when each low-level 571

context becomes activated. We begin this section by defining 572

terms and discussing how the observational data are captured. 573

1) Acquiring the Observational Data: Before the learning 574

process can begin, the human actor to be observed must clearly 575

understand the mission he is to perform. He must also be in 576

an environment (either live or simulated) that he can affect 577

through his actions. Furthermore, the observational system 578

must be situated so it has the most direct access to the stimuli 579

seen by the human actor without impeding him in any way. 580

In this paper, we simplify the problem somewhat by using a 581

simulator to implement the learning algorithm. This facilitates 582

the observation process and allows us to concentrate on the 583

technical feasibility of the algorithm. 584

While the human actor executes a high-level mission within 585

the simulation, FAMTILE records all relevant and visible stim- 586

uli on the human, along with the actions taken by the human 587

at the time those stimuli are presented. A recording is made 588

at each decision point i reached during the execution of the 589

behavior to be learned. In the simulated world, these decision 590

points can be either continuous points or segments of time or 591

planned decision points where time is not relevant, such as in 592

a turn-based game, such as chess or poker. To account for the 593

reactive nature of the human’s actions at any decision point i, 594

we refer to the time at which the stimuli are presented as 595

time i− and the time at which the human switches his active 596

context as time i+. We assume that the human cannot anticipate 597

the environmental trigger but must perceive it before acting to 598

switch contexts. Anticipation is a complicating feature at this 599

time, and we leave that for future research. However, we see 600

no fundamental impediment to a future implementation of this 601

feature. 602

At the point when the human completes the scenario, the 603

learning system will have compiled a set of recordings that 604

should encompass all relevant stimuli and the actions taken by 605

the human actor. This set is known as the observation sequence 606

for the executed scenario. Individual members of this sequence 607

are distinguished by the simulation-time at which they were 608

recorded and are referred to, naturally enough, as observations. 609
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Fig. 3. Generic context template and the TBI engine.

These observations, which are labeled σi, denote decision point610

i, along with the set of visible stimuli Φ that existed at i− and611

the set of actions Γ taken by the human at i+. Thus612

σi = 〈Φi− ,Γi+〉

where Φi− = {o0, o1, . . . , on} are the traits of observation i,613

and Γi = {jo, j1, . . . , jn} represent the actions taken by human614

in response to observation at i.615

We define the complete observation sequence Ωn to be the616

set of observations σi taken of the human throughout an entire617

scenario n, i.e.,618

Ω =
⋃
i

σi.

After the observations of the human are complete, the entire ob-619

servation sequence Ω is presented to FAMTILE. At this point,620

the actions of the human are interpreted by the TBI engine,621

which will convert Ωn into a new observation sequence Ω
′
n,622

where the set of actions taken (represented by σi in Ωn) are623

replaced with the interpreted context. This context, which is624

inferred by TBI for decision point i, is represented by Ψi+ in625

the following equation:626

σ
′

i = 〈Φi= ,Ψi−Ψi+〉

Ω′ =
⋃
i

σ
′

i.

In addition, represented within σ
′
i is the inferred active context627

of the human prior to decision point i. This context is denoted628

as Ψi− and is identical to the context inferred from the previous629

decision step Ψi−1+ . FAMTILE’s TBI engine achieves this630

transformation by making an interpretation of each atomic631

action. Prior to the observation time, a KE defines each atomic632

behavior (i.e., the behavior the system will observe) that is633

necessary for the execution of some high-level behavior (the be-634

havior the system will infer). From these specifications, the KE635

also creates a set of context templates. Each of the templates’636

attributes is derived from fields within observation σi.637

Now we move on to the first part of the FAMTILE process:638

how to infer the human’s context.639

2) Part 1—Inferring the Context of the Human Performer:640

We assume that all low-level behaviors can be identified641

through observation. Because the low-level behaviors that com- 642

pose a particular context are known, we need only recognize 643

them through observation and record their presence. Then, we 644

must put them together into a sequence that explains the higher 645

level intentions (i.e., the context) of the observed performer. 646

To accomplish the latter case, we employ the TBI technique 647

discussed in Section III-A. 648

For convenience, we will consider an arbitrary set of con- 649

texts C = C1, C2, . . . , Cn and corresponding set of templates 650

T = T1, T2, . . . , Tn. Using this representation, we say that a 651

template Tj includes all attributes and weights common to its 652

corresponding context Cj . In a given scenario, all contexts Ci 653

are represented within TBI by a specific template Ti that defines 654

the attributes of Ci. 655

Each attribute ai in template Tj is a representation of a 656

condition that is prevalent in context Cj . Weight wi represents 657

the importance of ai in determining context Cj . A low weight 658

value for wk indicates that attribute ak is not an essential or 659

even very important characteristic of context Cj . Conversely, a 660

high value for wm indicates that attribute am is highly relevant, 661

perhaps even essential, for context Cj . This representation was 662

used in both the works of Drewes [64] and Gerber [34]. Thus 663

Tj = {〈a0, w0〉, 〈a1, w1〉, . . . , 〈an, wn〉} .

The TBI engine infers a context by first evaluating the state 664

of each attribute in its set of predefined templates. After each 665

attribute is assigned a value (typically T or F, depending on 666

whether that action has been observed or not), a weighted sum 667

is computed for each template Tj and used as its template score. 668

This template score sj is computed as follows: 669

sj =
n∑

i=0

aijwij .

The value assigned to each attribute ai in template Tj depends 670

on the nature of the attribute. Fig. 3 represents a TBI engine 671

that considers a set of m context templates and n attributes per 672

template. On the left side of the figure, we see the composition 673

of a generic context template score. Note that the score is 674

generated using a simple weighted sum of each attribute score 675

(computed using the preceding equations). The right side of the 676

figure illustrates the comparative portion of the engine—each 677

score is reviewed and the maximum score is selected. The 678
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context associated with smax is chosen as the inferred context679

for that observation. Stensrud [66] provides a more thorough680

description of how TBI is applied to FAMTILE. The output of681

this first part, therefore, is an indication of what context the682

human is experiencing while the system observes his actions.683

3) Part 2—Associating Context Change to Environmental684

Triggers: This section discusses the part of the FAMTILE685

algorithm that learns the transitions between contexts affected686

by the human performer. It accomplishes this through neural687

networks.688

The ability of a neural network to handle “misbehaved”689

training sets is of particular relevance to learning from observa-690

tion. Consider the knowledge required to drive an automobile,691

which is an example of a tactical skill. The ability to handle a692

tire blowout while driving, particularly when at high speeds,693

is certainly important. However, this skill is rarely required,694

simply because tires rarely ever blow out. If one were to observe695

an automobile driver in order to train a neural network how696

to drive, the training pattern corresponding to a blown-out tire697

would represent a very small minority of the training set.698

In a CxBR model for tactical control of an entity in a699

simulation, it is possible that important events requiring a700

specific context transition infrequently occur. Because of this,701

training patterns representing these types of context transition702

cues will most likely be underrepresented within a training set.703

In such situations, traditional neural networks have a difficult704

time learning these patterns as a result of the strong emphasis705

on the other patterns. In these cases, the neural network tends to706

“overlearn” the more frequent patterns and discard the others as707

noise within the training set. In the case of our work, this noise708

may represent an interesting and important observation, making709

the human’s response to it very important to record. FAM neural710

networks are adept at recognizing the infrequent patterns with-711

out reversing the knowledge of any well-learned patterns [65].712

Through the creation of clusters, FAM also has the ability713

to handle a large sample of training patterns necessary for a714

complete observation of a human’s behavior. This clustering715

process has the effect of significantly reducing the complexity716

of a decision space, based on the size of the clusters created.717

The advantage here can be visualized by again considering the718

task of learning driver behavior. Because recording a decision-719

making cue (e.g., to change lanes, to brake, and to turn) often720

requires fine granularity across observations, several hundred721

observations of the driver/expert may be recorded throughout722

a few-minute driving task. Furthermore, values for the driver’s723

speed, heading, distance to other vehicles, and other potentially724

significant factors will certainly fluctuate, at least nominally,725

along a several-second interval where no significant behav-726

ioral change is executed. This is not because the driver con-727

sciously decides to make these changes (decisions that should728

be recorded and learned) but simply because of the dynamics729

of the environment and the driver’s inherent inability to hold an730

identical speed and course. A FAM system allows for nearly731

identical input patterns such as these (that map to the same732

output) to be represented by a single cluster. By creating a less733

complex decision space, we significantly reduce the order of the734

learning task.735

Our specific learning objective here is the transitions between736

contexts. The new context would contain the appropriate func-737

tionality to allow the agent to properly manage it. FAMTILE738

is built to recognize and capture those triggers and learn them 739

for subsequent use by the agent. We assume that all other 740

functionality—that which permit a context to correctly control 741

an agent when active—is already known a priori. 742

Set Ω′ is, at this point, transformed into a form usable by 743

FAM. This operation is done by converting each σ
′
i into a single 744

training pattern. For a training pattern to be readable by the 745

FAM neural network, each field must be a fuzzy value (some 746

real number between [−1, 1]). Within FAMTILE, the input 747

portion of the training pattern is derived from Φi= and Ψi− , 748

whereas the output pattern is derived from Ψi+ . 749

The subset Φi= of observation sequence Ω
′
n consists of fields 750

representing the human’s complete observation at time i−. The 751

human’s active context at i− is denoted by Ψi− . Converting the 752

observation for Ψi− , the observed active context at i− involves 753

the same procedure, regardless of the scenario. To convert the 754

identified active context into a field within the input pattern, 755

one field is set aside for every possible context in the scenario. 756

If a context j is identified as the active context, the jth field is 757

assigned a value of 1, and the other “context fields” within the 758

input pattern are assigned a value of 0. 759

This is done to persuade input patterns with different active 760

contexts to bind to different templates in ARTa. The following 761

equation represents an arbitrary input pattern converted from 762

Φi= that can be presented to FAM, which we refer to as Φ̇i= : 763

Φ̇i= =
observation fields︷ ︸︸ ︷

o1, o2, o3, . . . , ok−1, c1, c2, c3, . . . , cn−1︸ ︷︷ ︸
active context(n−1)

.

Output pattern Ψi+ is simply a representation of the inferred 764

active context at i+. Because of this, Ψi+ can be represented 765

as a j-bit binary number to identify one of j distinct contexts 766

as active, just as is done for the inferred context at i−. Within 767

Ψi+ , all bits are set to 0, except for one. If that one set bit is 768

the ith bit (i.e., oci in the expression for Ψ̇i+ ), that means that 769

context i has been identified as the active context for i+. This 770

representation scheme will make for a trivial clustering task for 771

ARTb, because exactly one output cluster will be generated per 772

context. Representing a context name in this manner allows for 773

the output of ARTb to be both readable and unambiguous for 774

either a KE or a separate module created to read its output. 775

The following equation represents an arbitrary input pattern 776

converted from Ψi+ that can be presented to FAM, which we 777

refer to as Ψ̇i+ : 778

Ψ̇i+ = oc1, oc2, oc3, . . . , ocn−1

(a bit string representing the selected active context).

The input and output patterns Φ̇i= and Ψ̇i+ presented to FAM 779

reflect observations recorded at specific times during the sce- 780

nario, along with the active contexts at those times, as identified 781

by the TBI engine. The input patterns are represented by quan- 782

titative values for each stimulus on the human—enemy move- 783

ments, environmental conditions, current physical conditions, 784

etc. The output patterns represent the action taken by the human 785

in response to the input pattern presented, where each action 786

reflects a transition from the provided context at the input to a 787

new active context which is inferred using TBI. The implication 788

here is that every action (and thus every output pattern) will 789
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Fig. 4. Learning context transitions in FAMTILE.

represent a transition to a new context, which is of course not790

always the case. Rather, actions representing no context transi-791

tion are also represented by patterns that require a transition to792

the current context—the equivalent of no context change.793

A training pattern is generated and presented to FAM for794

each observation made of the human during the execution of795

a scenario. Learning occurs through the creation of clusters in796

the ARTa and ARTb modules and of a many-to-one mapping797

between those templates. ARTa templates represent clusters798

of input patterns, similar in their representation, to which the799

human has responded by making a specific context transition.800

That transition is stored in a template in the ARTb module,801

and a mapping between the two templates is created. When802

the network subsequently encounters an input that matches the803

input pattern cluster represented by that template in ARTa, it804

will know that the appropriate response is stored in its mapped805

template in ARTb.806

Fig. 4 illustrates FAMTILE in learning mode. A recorded807

observation includes both the stimuli on the human and his808

resultant decision. A decision is considered to be the action809

made by the human in response to a set of stimuli presented810

at i and is expressed as the context that the agent enters (makes811

active). These stimuli, along with the active context in which812

the human is operating at i−, constitute the input pattern that813

is presented to ARTa. The actions that the agent executes in814

response to these inputs (at i+) are analyzed by a TBI module, 815

which then outputs the most likely candidate for the context 816

that corresponds to those actions. That context name is then 817

presented to ARTb as the output pattern for i and is also stored 818

for the next decision-point i + 1, where it will be presented as 819

part of the input pattern as the active context prior to the stimuli 820

presented and actions taken at i + 1. 821

The task for FAM, then, is to learn the correct context transi- 822

tion, given the current active context and the input stimuli on the 823

agent. To do this, the network will create templates in ARTa that 824

effectively cluster similar input patterns that induce a specific 825

context transition by the human. The template corresponding 826

to the actual transition made will be stored in ARTb, and the 827

Inner-ART module will create a link representing a mapping 828

between the two templates. After the training phase is complete, 829

there will exist a many-to-one mapping between the input- 830

pattern templates in ARTa and the context transition templates 831

in ARTb. 832

D. FAMTILE Operation 833

A summary of the sequence of events required for the 834

FAMTILE algorithm is presented here. 835

1) The human actor executes a high-level behavior in some 836

simulation or simulator. 837
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Fig. 5. Block diagram of the testing environment.

2) FAMTILE collects an observation sequence of the hu-838

man’s actions.839

3) The TBI engine interprets human actions and infers cor-840

responding contexts.841

4) The observation sequence with contexts inserted is con-842

verted into a set of input patterns.843

5) The sequence of contexts is converted into output844

patterns.845

6) The input/output patterns are paired and presented as846

training patterns for the neural network.847

7) The neural network is trained to recognize observation848

patterns and map them to specific high-level contexts.849

IV. TEST PROTOTYPE850

To evaluate the FAMTILE concept, a prototype system was851

built. However, in evaluating this prototype, it was first nec-852

essary to construct a test bed simulation in which training853

vignettes could be developed and executed. This simulation was854

written in Java and was designed to interface the FAMTILE pro-855

totype with the testing vignettes and to provide a graphical user856

interface for the human actor to perform his behaviors. A block857

diagram of the simulation environment is provided as Fig. 5.858

The simulation engine provides both the logic of the vi-859

gnettes and their graphical user interface, which was developed860

in Java. This interface was created in an attempt both to attract861

human test subjects to participate and to provide them with as862

realistic a vignette as possible.863

The simulation engine implements the logic and execution864

engine for each of the four vignettes. When a human subject865

selects one of them, the simulation instantiates it and presents866

the human with his first decision point. Each vignette is such867

that the human actions are turn based, and observations for868

a certain decision step represent a set of stimuli and resultant869

action for one turn. In a turn-based simulation, decision steps870

are triggered on human actions and not on actual clock time.871

This property ensures for FAMTILE that the human is making872

decisions in response to a known set of observations and that873

there is a correct pairing between those observations and that874

action. Otherwise, the system could not guarantee that the875

human was making decisions based on the observation recorded876

for that corresponding time step. The actions that take place877

within the simulation during training mode are presented here.878

• The simulation prompts the human actor to enter his/879

her name.880

Fig. 6. Vignette A.

• After the name is entered, the human selects a training 881

vignette. 882

• When a vignette is selected, the simulation engine calls 883

the initial commands that begin that vignette. That vignette 884

then displays the situation for the human and then pauses 885

until the human has made his/her response. 886

• That response triggers an event in the simulation that 887

brings up the next situation and writes the stimuli/response 888

pair to a text file, which is read by the interface class after 889

the training session. 890

To make a thorough evaluation of the learning algorithm, four 891

different test vignettes were developed. These are based on two 892

behaviors: 1) moving within a maze environment and 2) playing 893

a game of poker. 894

A. Maze Navigation: Vignettes A and B 895

The first two training vignettes involve the navigation of a 896

2-D maze. For each vignette, the human is asked to navigate 897

from his position within a virtual maze to a specified goal po- 898

sition. At each point during the vignette, the player is provided 899

a compasslike directional icon that indicates the distances—in 900

both the x and y directions—to the goal position. If the goal 901

position is located within the player’s field of view, its position 902

is marked on the map. 903

In Fig. 6, the circular shape occupying the center position 904

in the maze indicates the position of the human’s avatar. In 905

vignette A, the player can only see one space in all directions 906

from the avatar’s position. From the observations of this figure, 907

the human makes a decision on which direction to move. In 908

this vignette, the avatar and goal positions are reinitialized after 909

each human action. 910

In vignette B, the human is asked to navigate the avatar 911

toward a goal position and is given a larger frame of view (see 912

Fig. 7). The simulation also records the spaces that have been 913

visited by the avatar along his path to the goal position and 914

marks these spaces with a square shape on the maze view. 915
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Fig. 7. Vignette B.

For vignettes A and B, no context templates are required,916

because there are no contexts implied with the human’s move-917

ment. Vignettes A and B are used to provide control cases918

to evaluate the ability of the FAMs to learn without the en-919

cumbrance of the FAMTILE system. More details on this are920

provided in Section V.921

B. Poker Game: Vignettes C and D922

The other two training vignettes involve the game of Texas923

Hold’em Poker. The succeeding sections assume basic under-924

standing of the concepts of poker and the Hold’em Strategy925

[67]–[69]. These vignettes are used to evaluate the ability of the926

entire FAMTILE algorithm, including recognizing the atomic927

actions of the human.928

For this paper, two training vignettes were developed us-929

ing the Limit Hold’em game. In the first poker vignette930

(vignette C), only one betting round occurring prior to the flop931

is considered. The human is placed at a random position at a932

poker table and seated with seven computerized opponents. The933

dealer button is placed at a random position, and each player is934

dealt two hole cards. Starting with the player to the left of the935

big-blind bet, each opponent makes an action (either to fold,936

call, or raise) until it is the human’s turn to act. At this point, the937

human will know his two hole cards, his position at the table,938

and the actions of each opponent who has acted before him. The939

simulation then prompts the human to make an action: either940

to fold, call, or raise. The human’s actions are recorded, along941

with all applicable observations at that point; then a new hand942

is dealt, and the player is reseated. This process continues until943

the simulation has collected a requisite number of observations.944

A screenshot of the simulation for this vignette is provided in945

Fig. 8.946

For the second poker vignette (vignette D), the human is947

asked to make decisions throughout entire hands and accumu-948

late chips throughout the vignette. This is depicted in Fig. 9.949

Fig. 8. Vignette C.

Fig. 9. Vignette D.

This vignette begins just as the first poker vignette—the human 950

is placed at the table with seven opponents, and the button is 951

placed at a random position at the table. A hand is dealt, and 952

each opponent makes an action on their cards until it is the 953

human’s turn to act. When the human acts, however, the betting 954

round continues as well as the hand and proceeds just like a 955

standard round of Limit Hold’em. After each round, the dealer 956

button rotates one chair to the left, and a new hand is dealt. A 957

chip count is stored for the human, which reflects the amount 958

of money won/lost during the sequence of hands played. 959

In this vignette, the situations encountered by the human 960

are far more robust and are designed to challenge his playing 961
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TABLE I
RAISE IN POSITION CONTEXT

ability. Because the vignette involves entire rounds, the oppo-962

nents at the table react to the human’s decisions and use many963

of the strategies outlined in [69] to try and win hands. Since964

this vignette involves the observation of humans playing against965

opponents, it was important to create opponents who are able to966

pose at least minimal challenge. Opponents for the vignettes are967

programmed with the following:968

• basic understanding of the strength of its hole cards before969

the flop;970

• basic understanding of the hand strength relative to the971

cards on the board;972

• basic understanding of the hand potential relative to the973

cards on the board;974

• ability to bluff;975

• ability to trap or slowplay;976

• ability to change play based on position and amount of977

action in the betting round.978

For these vignettes, each action taken by the human must979

first be interpreted by the TBI engine before presenting a980

corresponding output pattern to the FAM. This output pattern is981

the context of the action taken, as interpreted by TBI. Individual982

actions performed by the human are assumed to be a conse-983

quence of the human acting in a particular context. To make an984

interpretation of the context embodied by the human’s recorded985

action, the TBI engine matched each template against the986

appropriate conditions present in the observation. The engine987

then infers the context in which the human is likely to be acting.988

This determination is then recorded by the interface module and989

transformed into a bit sequence representing the output pattern990

for FAM using the technique discussed in the previous section.991

In vignettes C and D, we consider a context to be a circum-992

stance and/or rationale for making a particular play. The raise993

action, for instance, is divided into contexts that differentiate994

the inferred reason for the raise. As discussed by Sklansky [68],995

there is a variety of purposes behind making a raise: to force996

weaker hands to fold; to get more money into a pot; to bluff,997

thereby causing stronger hands to fold; etc. While the human’s998

intent cannot be recorded through strict observation, it can be999

inferred if each of these purposes is encoded by a context.1000

Using expertise gathered from poker experience and from1001

various texts [67]–[69], a set of contexts that result in each1002

possible action (e.g., raise, call, bet, and fold check) in both1003

vignettes was generated. When an observation is presented to1004

FAMTILE’s TBI engine, it is compared against the attributes of1005

each context template and generates a score for that template.1006

Consider the template in Table I for the RaiseInPosition context.1007

This context refers to a situation where the human has made a1008

raise based mostly on his strong position relative to the dealer1009

button. As stated earlier, players on the button get to act last on1010

each postflop betting round, giving them a significant advantage1011

of being able to react to each opponent’s play.1012

Note the weights associated with each attribute. The most 1013

heavily weighted attribute is the player’s action: if the player 1014

does not make a raise, this weight induces the TBI engine to 1015

calculate a low score for this template. The other weights are 1016

assigned based on their relevance to the context, i.e., 1017

scoreatt =
(1 − |attobserved − atttemplate|)

rangeatt
weight.

Since the training patterns for the neural network come directly 1018

from the observations of the human under study, the amount of 1019

diversity among those training patterns is completely dependent 1020

on the robustness of the vignette in which that human operates. 1021

Knowledge used for training can only be extracted from 1022

observations. Thus, any relevant knowledge not executed within 1023

an observed simulation will not be learned by the neural net- 1024

work. Because of this, there will be gaps in the tactical knowl- 1025

edge about situations not encountered by the human during the 1026

observation phase. If these gaps are ignored by the learning 1027

system, the resultant autonomous agent will have no intelligent 1028

response if presented with that unlearned situation. The only 1029

defense against these gaps in knowledge is to train the network 1030

with as many examples as possible in hopes that they sample 1031

as much of the human’s knowledge as possible, i.e., provide 1032

vignettes in which the human must use all or most of his/her 1033

tactical knowledge. 1034

C. Generating Training Inputs from the Observation 1035

Generating training points for the maze vignettes is a matter 1036

of placing the player and goal at random locations within a fixed 1037

maze. Each time the player makes a move, the next training 1038

point input pattern becomes either a new random position for 1039

both him and the goal (as in vignette A) or the updated maze 1040

state based on the direction of the player’s previous movement 1041

(as in vignette B). The output pattern for that training point is 1042

then the action taken by the expert for the corresponding maze 1043

state represented by the input pattern. Each of these patterns, 1044

however, must first be translated into a readable form, so that 1045

they can serve as useful training patterns for FAMTILE. The 1046

output pattern is simply the context that the expert has chosen 1047

as a response to the stimuli represented by the input pattern. 1048

For the Poker vignettes, the simulation must generate and 1049

record the following pieces of information for each observation: 1050

• player’s hole cards; 1051

• board cards (vignette D); 1052

• player’s position; 1053

• position of the button; 1054

• opponent actions; 1055

• amount of money in the pot (vignette D); 1056

• player’s action. 1057

To generate this information, the simulation deals a random 1058

hand to the expert and seven automated opponents. Each oppo- 1059

nent makes an action until it is the player’s turn. At this point, 1060

the state of the hand is recorded, along with the action made 1061

by the player for his turn. For vignette C, each of these points 1062

occurs during the betting round prior to the flop. 1063

For vignette D, this observation is expanded to include inter- 1064

preted information about the player’s hand and position relative 1065
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TABLE II
VIGNETTE D CONTEXTS

to the rest of the table. To do this, the following parameters1066

are used:1067

• hole cards: rank of the player’s two hole cards (both are1068

scaled to values < 1);1069

• suited: boolean value indicating whether cards have the1070

same suit;1071

• hand strength: fuzzy value of the player’s hand, as calcu-1072

lated in [70];1073

• pPot: fuzzy value representing the potential of the player’s1074

hand drawing to a winning hand [70];1075

• nPot: fuzzy value representing the potential of the player’s1076

hand decreasing in strength due to future board cards [70];1077

• betting round: 4-bit binary value representing the current1078

betting round;1079

• last action: 4-bit binary value representing what the player1080

did on his last turn to act;1081

• pot size: number of chips currently in the pot, scaled to a1082

fuzzy value < 1;1083

• opponent bets in pot: scaled to a fuzzy value < 1 by the1084

size of the largest bet.1085

Table II summarizes the contexts used for vignette D. There are1086

a total of 24 contexts. For vignette C, only 12 contexts were1087

used. This is because there are fewer actions available to the 1088

player in vignette C (player cannot bet) and, more importantly, 1089

the player has less information about his hand (no board cards 1090

are shown in vignette C, only preflop action) and therefore 1091

cannot classify the situation to the same level of granularity. 1092

When the simulation records the expert’s action during the 1093

observation, the result is simply a character value representing 1094

either a raise, fold, or call. For both poker vignettes, however, 1095

FAM is used to create a mapping between the observed situation 1096

and the expert’s choice of context, and not simply his action. 1097

To make this transformation, the interface extracts necessary 1098

variables from the input pattern to present to the TBI engine, 1099

which makes a prediction of the most likely context that the 1100

expert has chosen. For vignette C, there are 12 contexts from 1101

which the expert can select. 1102

An output pattern for vignette C would therefore be a 12-bit 1103

binary number with all but one number set to zero. That number, 1104

in the jth position, represents that the TBI engine has identified 1105

context j as the active context for the observation represented 1106

by the input pattern. 1107

In this prototype, the FAM clusters are stored as 1-D 1108

arrays—one for each cluster in the ARTa and ARTb modules. 1109

Each entry in these arrays represents a field value of that cluster. 1110

To store the mappings, a separate array is created that represents 1111

the InnerART module of the FAM. This array contains one field 1112

for each cluster created in ARTa. The value stored in each field 1113

is the index of its mapped cluster in ARTb. For instance, if the 1114

ARTa cluster i is mapped to cluster j in ARTb, the InnerART 1115

array would look like [ia1, ia2, . . . , iac = j, . . .]. Here, the field 1116

containing the value j is stored in the ith slot. 1117

D. Comments on the Application Selected 1118

Two issues that demand some discussion and further expla- 1119

nation come to mind. We address these in this section. 1120

The data obtained were observed from a simulation of games, 1121

rather than from watching humans play the game in the real 1122

world. This is particularly true for the poker-based vignettes (C 1123

and D). The nature of vignettes A and B is such that they really 1124

must be played in a computer for them to make much sense. 1125

The reason for using a simulation, of course, was to maintain 1126

control on the data and avoid noise from the environment. Given 1127

that proof of concept of the learning of transitions was the main 1128

objective of this paper, we believe that this is justified. However, 1129

the question on how one would apply this approach when 1130

observing an actor in the real world arises. Our response is that, 1131

in an ideal world, our approach could be used in such a situation 1132

as long as the features of the actor’s actions could be extracted 1133

from the observations logged by some front-end process. For 1134

example, in poker, the motion of throwing down the card played 1135

signals a player’s move. The front-end process would have to 1136

interpret this move and then focus on the card played to identify 1137

it. Alternatively, folding is signaled by laying down all cards 1138

and pushing them away from the player. Once this information 1139

is fed to our learning system, it would see no difference from 1140

having observed a simulation. However, the envisioned front- 1141

end process would be quite complex and beyond the scope of 1142

this research, at least for the poker application. 1143

More generally, the feasibility of building an adequate front- 1144

end process to extract the features would depend on the 1145
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application, i.e., the type of task being observed and learned. In1146

the case of a physical task or activity where only the location,1147

direction, and speed of a person or a vehicle become important,1148

then a Global Positioning System transmitter that identifies1149

these data to an observer may be sufficient to learn that actor’s1150

or vehicle’s behavior. This was shown by Fernlund et al. [5],1151

albeit using a different approach to learning from observation.1152

However, applications that heavily depend on gestures or hu-1153

man gesticulated motions (such as throwing down cards) may1154

require highly complex front ends to permit their use in learning1155

from observation and would thereby be more limited in their1156

application.1157

The second question that arises is whether this approach1158

would work in continuous games or tasks that are not turn1159

based. Clearly, turn-based games provide a natural cue for the1160

context to potentially change. Such would not be the case in1161

many continuous tasks such as controlling a vehicle (e.g., car1162

and aircraft). While knowing the time of this (potential) context1163

transition cue clearly simplifies the learning, we can project1164

how such a system would work.1165

Our approach would be to look for an “interesting” action or1166

event in the sequence of events being observed. Such an “inter-1167

esting” event would indicate the triggers for the change in con-1168

text, which is what we are trying to learn. The change in context1169

itself could be identified by a TBI engine by identifying when a1170

new template is used to describe the actions of the human actor.1171

“Interesting” activities would include events, changes in behav-1172

ior (e.g., slowing down and changing direction), the actions of1173

others (e.g., an enemy fires upon the human actor), environ-1174

mental occurrences (e.g., it starts to rain), or even geographical1175

location (e.g., passing a landmark and reaching an exit in an1176

interstate highway). Of course, the crux of this approach would1177

be carefully defining the concept of “interesting,” as well as de-1178

termining how to identify all such events and actions just before1179

and after the transition. Events and actions after the transition1180

takes place could indicate anticipation by the human actor.1181

While we did not address the issue of temporally continuous1182

actions, it does remain an interesting subject of future research.1183

V. TESTING AND EVALUATION OF CONCEPT1184

We subjected the prototype FAMTILE system to six test1185

scenarios (TSs) to determine whether the concepts behind the1186

prototype—the use of neural networks to learn context tran-1187

sition criteria from observation of a human performer—work1188

as expected. As described in the previous section, we have1189

developed four vignettes (A–D), each presenting the human test1190

subjects with a different game in which to make decisions. We1191

designed the six TSs to evaluate the effectiveness of our work.1192

TSs 1 and 2 involve the first two vignettes, whereas TSs 3, 4, 5,1193

and 6 involve the poker vignettes (C and D).1194

For this evaluation, four human test subjects (denoted1195

here as Alpha, Bravo, Charlie, and Delta) are used. Three1196

subjects participated in each of the four vignettes, but they1197

were different ones for the various vignettes. This was done1198

to accommodate their varying availabilities. The subjects were1199

selected from a pool of students in the laboratory that had some1200

experience with poker. Three of the subjects were male (Alpha,1201

Bravo, and Charlie), whereas subject Delta was a female. With1202

regard to the poker vignettes, two of the three participating1203

subjects (Alpha and Charlie) considered themselves to be 1204

of moderate to advanced skill, whereas subject Delta was 1205

a relative novice. These subjects were asked to install the 1206

vignettes on their computer and play the games while the 1207

simulation recorded each of their decision points. 1208

Subjects Alpha, Bravo, and Delta participated in TSs 1 and 2. 1209

These scenarios correspond to vignettes A and B, respectively, 1210

and evaluate the ability of FAM to learn relatively simple be- 1211

haviors exhibited by the test subject in these vignettes, without 1212

the TBI context identification feature. The basic objective of 1213

TSs 1 and 2 was to evaluate the ability of a standalone FAM 1214

to learn human-performed actions in a simple game before 1215

applying them to a more complex game. In TSs 1 and 2, atomic 1216

actions are represented by directional choices: either left, right, 1217

up, or down. These directions are also representative of the 1218

entire action space of the behavior, as no other actions are 1219

permitted within the maze. In vignettes A and B, all possible 1220

contexts that may provide motivation for each action are ig- 1221

nored during training. For instance, the motivation of going left 1222

because the goal state is in that direction is considered to be 1223

identical to the motivation of going left simply because that is 1224

the best alternative. Because of this, contexts behind the selec- 1225

tion of particular moves by the test subjects were not considered 1226

in these two testing scenarios. We should note, however, that 1227

contexts still exist on the part of the agent that moves in the 1228

simulation. It is just that they are not considered in the training. 1229

In TSs 3 and 4, subjects Alpha, Charlie, and Delta performed 1230

the more complex activities related to vignettes C and D, 1231

respectively: participating in hands of Texas Hold’em. The 1232

objective of TSs 3 and 4 was to evaluate the ability of a 1233

standalone FAM system to learn the actions and play them back 1234

in a simulated game, regardless of the underlying contexts. The 1235

learning poker agent merely learned to map the game conditions 1236

(the environment) to the actions taken by the test subjects. 1237

Comparison of the results of TSs 3 and 4 later to those of TSs 5 1238

and 6 would, furthermore, provide an indication of the value of 1239

learning to predict the underlying contexts rather than merely 1240

the actions. Vignettes C and D involve reasoning about several 1241

observations, where each may have a significant impact on the 1242

subject’s eventual decision. Furthermore, each action taken by 1243

the subject may be the result of complex motivations, as would 1244

be appropriately defined in a context. For instance, a raise or a 1245

bet resulting from the action prescribed in one context may be 1246

caused by a different reason than it would in another context. 1247

TSs 3 and 4, however, intentionally ignore this fact. When a 1248

player makes an action, it is presented to FAM as that action, 1249

regardless of any context that may be behind it. Because of this, 1250

these tests mirror those of TSs 1 and 2, but with significantly 1251

more complex behaviors. 1252

TSs 5 and 6 also employ vignettes C and D, respectively, 1253

and were executed by subjects Alpha, Charlie, and Delta. By 1254

contrast, TSs 5 and 6 consider the context of each subject 1255

action prior to creating a training pattern for the neural net- 1256

work. Before running TSs 5 and 6, a set of contexts was 1257

developed for both vignettes C and D in an effort to capture 1258

all possible motivations for each action. During training, the 1259

subject’s action at each decision point is first examined by a 1260

TBI engine to infer a context for that point. In TS 5, vignette C 1261

is reused, and FAMTILE attempts to learn subject actions 1262

just as FAM attempted to do in TS 3. It is hypothesized that 1263
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the representation of the subjects’ actions as inferred contexts1264

can help the network to more effectively make finer clusters1265

representing more closely related patterns, thereby increasing1266

the predictive accuracy of the system. For the FAM within1267

FAMTILE, just as in TSs 3 and 4, the actions of the observed1268

human performer (the subject) are presented as output patterns,1269

regardless of the motivation behind the action.1270

A. Evaluation Procedure1271

The evaluation of the FAM learning process for TSs 3 and 41272

was done as presented here.1273

• The entire observation sequence gathered from subject i is1274

used to generate a set of training patterns—no validation1275

set is generated.1276

• FAM is trained with a set of patterns and learns a mapping1277

between observation and action.1278

• FAM replaces the test subject and is presented with various1279

decision points as the game progresses.1280

• For each decision cue presented by the simulation, FAM1281

predicts an action based on what it learned.1282

• That action is then executed in the simulation, and the1283

vignette continues.1284

• The overall performance of both subject i and FAM is1285

compared based on the metrics collected throughout the1286

execution of the scenario.1287

When separately testing FAM (TSs 3 and 4), the network is1288

trained with the subject’s action being presented at its output.1289

For FAMTILE (TSs 5 and 6), the actions of the subject are first1290

translated to an inferred context (by the TBI) for each decision1291

point, and a representation of that context is presented to the1292

FAM network within FAMTILE. After the training of each1293

system was completed, the simulation was run again. This time,1294

each decision cue was presented to the newly trained poker1295

agent. Based on its knowledge, then, the poker agent running1296

FAMTILE predicts a context, and the actions associated with1297

that context were executed. In contrast, the standalone FAM1298

produces only a predicted action. Six steps for testing the full1299

FAMTILE system are given here.1300

1) The entire observation sequence gathered from subject1301

i is used to generate a set of training patterns. Both1302

the training and validation sets are taken from these1303

observations.1304

2) FAMTILE is trained with the complete set of patterns1305

and generates a mapping between the observation and the1306

context.1307

3) FAMTILE takes the place of the subject within the simu-1308

lation and executes the appropriate vignette.1309

4) For each decision cue presented by the simulation,1310

FAMTILE predicts a context.1311

5) The identified context provides an appropriate action that1312

is then executed. The vignette continues.1313

6) The overall behaviors of both subject i and FAMTILE are1314

compared based on the metrics collected throughout the1315

execution of the vignette.1316

For each scenario, the following FAM parameters were held1317

constant:1318

• ε = 0.00001;1319

• βa = βb = 1;1320

• ρb = 1.1321

TABLE III
SUMMARIZED RESULTS FOR SCENARIO 1

The only parameter that was modified during the testing phase 1322

was the baseline vigilance ρa. This parameter has a direct effect 1323

on the granularity of the clusters generated in the ARTa module. 1324

These clusters represent groups of input patterns presented to 1325

ARTa, where each pattern maps to the same output pattern 1326

(either an action as in TSs 1, 2, 3 and 4, or a context as in TSs 5 1327

and 6) and is closely matched with respect to its individual field. 1328

The baseline vigilance parameter ρa affects this granularity 1329

by raising the vigilance parameter, which is responsible for 1330

rejecting the addition of new input patterns to a certain cluster 1331

if it fails to match a certain criteria. This change ultimately 1332

increases the number of input pattern clusters created in ARTa 1333

by decreasing their overall size (and inclusiveness). This effect 1334

is quantitatively illustrated in the succeeding sections. 1335

B. TS 1 Results 1336

Essentially, the task for FAM in this TS is to create a mapping 1337

between the maze topology and a predicted direction for the test 1338

subject facing that situation: either left, right, up, or down. 1339

The intent of vignette A is to create an environment where 1340

the actions of the subject are closely tied to the primary goals 1341

of the behavior. In this vignette, the subject makes only a single 1342

move in response to being told where and how far away the 1343

goal position is. Each atomic move, therefore, is made in direct 1344

accordance with the objective of reaching the goal. In the next 1345

few vignettes, the behavior required becomes increasingly com- 1346

plex, and the relationship between the atomic actions required 1347

by the subject consequently become less dependent on the 1348

overall objective and more dependent on the context in which 1349

the subject is operating. 1350

The testing proceeded in five steps. 1351

1) Randomize the order of the 1000 training points. 1352

2) Choose 900 of the 1000 points at random to train the 1353

neural network; use the final 100 points for the valida- 1354

tion set. 1355

3) Train the neural network using the 900 chosen training 1356

points. 1357

4) Test the neural network using the remaining 100 points. 1358

5) Record the number of correct predictions made out of 1359

100 testing patterns. 1360

Table III displays the results for each subject, including the 1361

sample mean predictive accuracy µ and standard deviation σ. 1362

A 2-tailed t-test was used on each set of data to validate that 1363

the computed sample mean µ for each subject approaches the 1364

actual mean µ. Using an α value of 0.01, the test computed a 1365

99% confidence interval for the actual mean. 1366

As expected, FAM is able to successfully learn the movement 1367

patterns for each of the three subjects. Success, here, is defined 1368

as better than random. A random guess at the subject’s action 1369

for vignette A would yield, on average, 25% predictive accu- 1370

racy (because there are four possible actions). As a qualitative 1371
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TABLE IV
SUMMARIZED RESULTS FOR TS 2

TABLE V
AVERAGE PREDICTIVE ACCURACY FOR TS 3 USING OPTIMAL ρa VALUES

comparison, consider the accuracies achieved by each subject.1372

For subject Alpha, the network was able to predict, on average,1373

almost 95 of the 100 testing patterns. Even for the worst cased1374

subject (TS 3), FAM was able to predict nearly 81% of the1375

testing patterns.1376

The purpose is for these results to serve as a baseline to1377

evaluate FAM (and ultimately FAMTILE) and examine how1378

this notion of context affects their predictive accuracy.1379

C. TS 2 Results1380

TS 2 was executed in the same manner as TS 1, and the same1381

three subjects were used. Within this scenario, each subject1382

makes consecutive moves within a 10 × 10 maze, with the1383

board and goal positions resetting each time the subject reaches1384

the goal. The scenario ends when the subject has generated1385

1000 training points—each training point represents a specific1386

maze state and the action the subject makes in response to that1387

state. Those points were used to train and evaluate the neural1388

network. Table IV displays the results of the 1000 run sets for1389

each subject.1390

In this scenario, FAM was able to adequately learn the1391

movement patterns for each of the three subjects. Furthermore,1392

the predictive accuracy significantly varied across subjects, just1393

as it had in scenario 1. FAM achieved a predictive accuracy of1394

nearly 93 of 100 for subject Alpha versus 84.5 and 85.6 for the1395

other two.1396

D. TS 3 Results1397

In vignette C, each of three test subjects is placed at a1398

simulated Texas Hold’em game with seven computer-generated1399

opponents. As expected, the predictive accuracy of FAM signif-1400

icantly degraded when tested using vignette C as a result of the1401

greater complexity of the problem. By the numbers, the network1402

achieved best-case predictive accuracies of 75.0, 68.5, and 75.61403

for each player versus 92.5, 84.5, and 85.6 for TS 2, respectively1404

(see Table V).1405

Comparing the predictive accuracies of FAM on these two1406

subjects for TSs 2 and 3, there is a 17.5% decrease in predictive1407

accuracy for subject Alpha and a 17.1% decrease for subject1408

Delta. This is a sharp contrast to the statistically insignifi-1409

cant performance difference between TSs 2 and 1, where the1410

network’s predictive accuracy changed to 2.2% and 2.8% for1411

subjects Alpha and Delta, respectively. These results confirm 1412

that the poker environment of vignette C is much more complex 1413

and therefore harder for FAM to learn versus that of the simpler 1414

maze vignettes. What this means in terms of the network itself 1415

is that FAM had a more difficult time effectively creating 1416

clusters with similar data points that mapped to the output 1417

patterns representing correct predictions of the subject’s action. 1418

An interesting result of this test was the sharp contrast in 1419

the predictive accuracy of FAM for subject Delta versus the 1420

other two subjects. As previously reported, FAM was only able 1421

to predict 68.54% of subject Delta’s actions versus 75.04 and 1422

75.56% for the other two subjects. One hypothesis as to this 1423

discrepancy is the difference in skill between subject Delta and 1424

subjects Alpha and Charlie. In Texas Hold’em, proper play 1425

before the flop is both the easiest piece of strategy to learn 1426

and the most crucial [69]. Strategy after this round becomes 1427

much more complex because of the explosion of information 1428

present with community cards on the board. Because of this, 1429

Limit Hold’em play before the flop round of betting tends 1430

to be somewhat mechanical among experienced players. This 1431

is supported by the data on subjects Alpha and Charlie, who 1432

shared similar experiences and read much of the same literature. 1433

Subject Delta (the novice player as previously described), on 1434

the other hand, has much less experience; thus, her play is likely 1435

to be more erratic and, therefore, less predictable. However, a 1436

similar drop-off between subject Delta versus subjects Alpha 1437

and Charlie is present in the results reported in scenario 1 1438

(although not in scenario 2). Because of this, another hypothesis 1439

for the change in predictive accuracies is the level of attention 1440

Delta paid to the exercise for vignettes A and C. Since the 1441

participants did not execute each vignette in sequence (and 1442

was not monitored during the exercises), it is possible that 1443

Delta simply was not paying full attention during the exercises. 1444

This hypothesis is bolstered by the more reasonable results of 1445

scenario 2, where the decision points were much more straight- 1446

forward (navigating an entire maze versus simply making a 1447

single decision of direction). 1448

E. TS 4 Results 1449

In TS 4, the predictive accuracies for FAM were collected 1450

and analyzed for vignette D. Just as vignette C, this vignette 1451

is set at the poker table with seven computer-generated agents 1452

playing against the subject in games of Texas Hold’em. Here, 1453

however, the subject’s decision points are not limited to the first 1454

round of action. Instead, a series of entire hands are carried out 1455

to their completion: if a subject folds, a new hand is dealt; if 1456

a subject raises, the opponents accordingly react to that raise; 1457

a flop, turn, and river are dealt; and betting rounds follow 1458

just as in an actual hand. The subject is also given a stack of 1459

100 “chips” that is maintained throughout the vignette. In this 1460

fourth and final evaluation of the FAM, we continue to examine 1461

its ability to learn subject actions as a function of his cards, his 1462

position at the table, and the betting action. 1463

Once again, the increase in complexity of vignette D com- 1464

pared to vignette C resulted in further erosion in the FAM’s 1465

predictive accuracy. The best-case accuracies of 55.32, 58.95, 1466

and 58.12 (see Table VI) are an average of more than 20% 1467

worse than those of scenario 3, which is nearly twice the 1468

decrease observed between vignette C and the maze scenarios. 1469
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TABLE VI
AVERAGE PREDICTIVE ACCURACY FOR TS 4 USING OPTIMAL ρa VALUES

TABLE VII
SUMMARIZED RESULTS FOR SCENARIOS 3 AND 5

It was observed in TS 3 that FAM significantly performed1470

worse on Delta than on the other two experts. Furthermore, it1471

was noted that Delta had several years fewer experience than1472

the other two, which possibly affected the predictability and1473

consistency of the actions.1474

The complexity of this scenario, however, seems to have1475

neutralized this effect. In fact, FAM was slightly more effective1476

in the best case at predicting expert Delta’s actions than those1477

of the other two experts. As it turns out, Charlie (who did not1478

participate in vignette C or the maze vignettes) had comparable1479

experience as expert Alpha.1480

F. TS 5 Results1481

The objective for TS 5 is to evaluate FAMTILE’s ability1482

to predict both the subject’s inferred active context and his1483

resultant action. Vignette C is used for this TS, which is the1484

same one used to evaluate FAM in testing scenario 3. Because1485

of this, the results of TS 3 serve as a baseline performance1486

metric for the results achieved here. Unlike FAM, however,1487

FAMTILE instead attempts to predict the subject’s inferred1488

active context. In order to make a comparison between FAM1489

and FAMTILE, the predicted contexts of FAMTILE must then1490

be converted to a predicted action for the subject, using the1491

contents of the predefined context template. Because FAM does1492

not make context predictions, this determination is necessary to1493

compare the predictive accuracies of the two learning systems.1494

The results of scenario 5 are presented in Table VII (represented1495

by µ1), along with those from scenario 3 (represented by µ2),1496

using 900 training patterns.1497

There are several interesting things to note from these re-1498

sults. In terms of the primary objectives of this research, the1499

numbers in the third column are the most important—how well1500

does FAMTILE predict the inferred context of the subject? As1501

Table VII illustrates, these predictive accuracies of the subject’s1502

action for FAM and FAMTILE are nearly identical for each1503

batch of runs and each subject. In the best case, for subject1504

Alpha with 900 training patterns, FAMTILE outperformed1505

FAM with an average of 75.63 correct predictions versus 75.041506

for FAM. In the worst case, for subject Delta, FAM narrowly1507

outperformed FAMTILE with an average of 75.56 correct pre-1508

dictions versus 75.37 for FAMTILE. However, neither of these1509

margins is statistically significant.1510

TABLE VIII
AVERAGE CONTEXT-PREDICTIVE ACCURACY FOR TS 5

TABLE IX
SUMMARIZED RESULTS FOR SCENARIOS 4 AND 6

In addition, FAMTILE is able to accurately predict the 1511

subject’s active context an average of 67.71, 59.98, and 66.26 1512

times for each of the three subjects observed, respectively, 1513

at optimum values for ρa (see Table VIII). Comparing these 1514

accuracies with those of FAM for predicting subject actions, we 1515

note that FAMTILE is an average of only 11.52% less effective 1516

at predicting contexts than FAM is at predicting actions. 1517

The fact that FAMTILE is able to generate a competitive 1518

degree of context-predicting accuracy without disrupting the 1519

ability of FAM is significant. In effect, therefore, we have cre- 1520

ated a system that adds the ability to predict context transitions 1521

to a neural network without significantly affecting its ability to 1522

predict simple actions. 1523

G. TS 6 Results 1524

In scenario 6, predictive accuracies for FAMTILE are col- 1525

lected and analyzed for vignette D as they were for FAM 1526

in scenario 4. Table IX summarizes the results of a 2-tailed 1527

t-test on the best-case predictive accuracy means achieved in 1528

scenarios 4 (µ2) and 6 (µ1) for each subject. In the table, the 1529

values from scenarios 3 and 5 are annotated in parentheses. 1530

The predictive accuracy of FAMTILE for predicting the 1531

subject’s inferred context also considerably decreased from the 1532

values achieved in scenario 5. Whereas FAMTILE predicted 1533

contexts at rates of 67.71, 59.98, and 66.26 for vignette C, 1534

those accuracies dropped by an average of more than 28% 1535

across the two subjects who then also participated in vignette D. 1536

One significant reason for this was the increase in the number 1537

of contexts. This number doubled from 12 to 24 contexts for 1538

vignette D, because two new actions needed to be accounted for 1539

(i.e., bet and check), along with the representation of contexts 1540

potentially present after the preflop round of betting. Note that, 1541

with 24 contexts, a random guess of the inferred active context 1542

could be expected to be correct slightly more than 4% of the 1543

time, which is ten times less than the accuracy achieved by 1544

FAMTILE. 1545

Furthermore, vignette D requires the player to reason about 1546

entirely new and more complex situations than those faced in 1547

vignette C. In addition to his/her hole cards, the player must 1548

also consider not only the community cards but also the action 1549
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of previous betting rounds and the possible responses of each1550

opponent in response to a particular action.1551

VI. CONCLUSION AND LESSONS LEARNED1552

Based on the results tabulated in the previous section, it is1553

concluded that FAMTILE is an adequate technique for learning1554

high-level behaviors and offers several promising character-1555

istics that can be exploited in future research. Because it is1556

able to learn low-level contexts from human actors without1557

adversely affecting the clustering ability of FAM, we feel that1558

the FAMTILE system provides a significant tool for learning in1559

systems where it is desirable to gain a perspective of why the1560

human actor is doing what he/she is doing.1561

The results of the two maze scenarios provide a good indi-1562

cation as to FAM’s ability to predict human responses to an1563

observation. In TS 1, the network is able to correctly predict a1564

subject’s movement at an average of 86% on the validation set,1565

achieving nearly a 95% average for one of the three subjects.1566

This scenario included input training patterns with 27 fields and1567

four possible output patterns. The second maze TS expanded1568

the subject’s viewing range, more than tripling the number of1569

input-pattern fields to 88 (92 if the subject’s previous action was1570

recorded and considered). Nevertheless, FAM is able to predict1571

85% of the validation set for the three subjects, increasing to1572

nearly 87% when the subject’s previous action is considered.1573

While these are impressive numbers for predicting three1574

different subject’s actions, they only speak to the successes of1575

FAM and do not address the capabilities of FAMTILE. These1576

scenarios were executed and reported, for the most part, to1577

justify the use of FAM for doing the low-level learning task.1578

Had these evaluations been a failure, a different learning system1579

would have had to be selected—one that performed better at1580

predicting actions within these training scenarios.1581

As described in Sections IV and V, FAMTILE requires the1582

use of a completely separate TBI module that encodes a priori1583

knowledge about the scenario within its context templates,1584

whereas FAM itself requires no such input. FAMTILE fails1585

to produce a worthwhile increase in predictive performance,1586

therefore negating our hypothesis. A separate set of tests was1587

run to evaluate FAMTILE’s ability to correctly predict the in-1588

ferred expert context for each decision point. While these tests1589

resulted in lower predictive accuracies—certainly expected be-1590

cause the neural network must choose between 12 possible out-1591

put patterns, instead of only three, when predicting actions—the1592

results were promising. Using 900 training patterns, FAMTILE1593

is able to correctly predict an average of 64.77 contexts out of a1594

possible 100 (64.77%) across the three experts. As reported in1595

Section VI, FAMTILE’s predictive accuracy for contexts is only1596

around 11% worse than its accuracy for actions. This accuracy1597

is achieved, furthermore, without affecting the accuracy of1598

the network in predicting the expert’s overall action. What1599

this means, then, is that FAMTILE can provide a significant1600

advantage over other supervised learning algorithms in situa-1601

tions where the identification of expert context provides more1602

important or additionally worthwhile information versus simply1603

being able to predict low-level action. In a more robust poker1604

simulation, for example, the ability of FAMTILE to identify1605

context could drive additional behaviors, aside from the simple1606

game action, such as additional “table talk” to project a strong1607

image while bluffing, voice intonation, etc. Generally, we feel 1608

that the FAMTILE system is most useful for learning tasks 1609

where three conditions hold. 1610

1) The behavior satisfies the characteristics of high-level 1611

tactical behavior, as defined in Section I. 1612

2) The user is interested in creating models of the expert’s 1613

behavior and is more interested in his resultant intentions 1614

and motivations than the actions observed at the lowest 1615

level. 1616

3) The expert’s ultimate action is more closely tied to his 1617

low-level behavior than to the raw observation presented 1618

at each decision point. 1619

This difference in difficulty between the maze and the poker 1620

vignettes seemed to create a good set of conditions for evaluat- 1621

ing both FAM and FAMTILE. The first human-prediction task 1622

(the maze) was found to be relatively easy yet reflected some 1623

variability among the three subjects observed. The second two 1624

TSs introduced the poker scenario. These vignettes introduce a 1625

learning challenge that, while containing a comparable number 1626

of input-pattern fields and output possibilities, proved to be a 1627

more difficult task for both FAM and FAMTILE. 1628

FAMTILE requires the use of a separate TBI module that 1629

encodes a priori knowledge about the scenario within its con- 1630

text templates, whereas FAM itself requires no such input. 1631

FAMTILE fails to produce a worthwhile increase in predictive 1632

performance. 1633

The central assumption made for this research was that high- 1634

level behavior can be represented by a sequence of lower level 1635

behaviors that can be modeled by CxBR contexts. However, 1636

the trick then becomes defining and partitioning each context 1637

of a behavior in such a manner that they are truly atomic and 1638

identifiable, independent of the specific subject being observed. 1639

For example, consider the RaiseWithStrongButVulnerableHand 1640

context used in vignette D. This context was modeled to 1641

represent cases where the subject believes not only that he has 1642

the best hand at the moment but also that his opponents can 1643

easily draw cards to beat him. 1644

This context raises an interesting question: What if the 1645

subject does not actually recognize this? Obviously, then, the 1646

templates must be defined such that this context is not inferred. 1647

However, what if there are no contexts that accurately represent 1648

the low-level motivation and behavior of the human subject? 1649

High-level behaviors whose specifics are heavily dependent 1650

on human preference and expertise are equally difficult to rep- 1651

resent. While a significant amount of a priori knowledge was 1652

encoded into the context templates used for scenarios 3 and 4, 1653

that knowledge does not represent the full range of motivations 1654

and contexts that constitute the entire task of playing Hold’em 1655

Poker. This is because these contexts are so dependent on the 1656

tendencies of the individual subject. Some players may employ 1657

poor strategies, for instance, that are not represented as a high- 1658

level context template. These absences can ultimately reduce 1659

the predictive accuracy of the FAMTILE system. 1660

However, that is not to say that these assumptions serve only 1661

to doom the chances of success for our approach. On the con- 1662

trary, these assumptions provide a means for motivating the di- 1663

rections that research in human behavior representation should 1664

progress. If we choose to learn a task where the modeling 1665

architecture, subject tendencies, and context topologies are all 1666

known, it is likely that the task modeled is too simple and not 1667
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worth modeling. Texas Hold’em Poker, on the other hand, is a1668

highly complex game, and the number of techniques, strategies,1669

and styles documented and used by advanced players suggest1670

that the game is as much of an art as it is a science.1671
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