
A Comparison of Behavior Cloning Methods in Developing Interactive
Opposing-Force Agents

Logan Lebanoff, Nicholas Paul, Christopher Ballinger, Patrick Sherry,
Gavin Carpenter, Charles Newton

Soar Technology, Inc.
Orlando, FL

{logan.lebanoff, nicholas.paul, cballinger, patrick.sherry, gavin.carpenter, charles.newton}@soartech.com

Abstract

Modern modeling and simulation environments, such
as commercial games or military training systems, fre-
quently demand interactive agents that exhibit realis-
tic and responsive behavior in accordance with a pre-
determined specification, such as a storyboard or mili-
tary tactics document. Traditional methods for creating
agents, such as state machines or behavior trees, neces-
sitate a significant amount of effort for developing state
representations and transition processes through man-
ual knowledge engineering. On the other hand, newer
techniques for behavior generation, such as deep rein-
forcement learning, require a vast amount of training
data (centuries in many cases), and there is no guarantee
that the generated behavior will align with intended ob-
jectives and courses of action. This paper examines the
application of behavior cloning approaches in designing
interactive agents. In our approach, users start by defin-
ing desired behavior through straightforward methods
such as state machine models or behavior trees. Behav-
ior cloning methods are then used to transform ground-
truth trajectory data sampled from these models into
differentiable policies that are further refined through
engagement with interactive game environments. This
method results in improvements in training results when
compared on dimensions of task performance and sta-
bility of training.

Introduction
High-fidelity training, gaming, and simulation software
products often include AI-enabled opponents that provide
entertaining, competitive, and realistic interaction opportu-
nities. However, developing these opponent forces (OPFOR)
is a resource-intensive process. Common techniques used
in industry to implement AI-driven behaviors include the
use of behavior trees and reinforcement learning algorithms.
Each technique involves trade-offs: behavior trees are rel-
atively straightforward to implement and visualize but in-
volve a large amount of manual knowledge encoding and do
not easily generalize to unanticipated situations. Reinforce-
ment learning approaches exhibit stronger generalization ca-
pabilities but are difficult for behavior designers to control,
visualize, or explain and most use cases require enormous
amounts of training data. In this paper, we propose behavior

Copyright © 2023 by the authors. All rights reserved.

cloning as a best-of-both-worlds approach where behavior
designers first develop simple and authorable state machines
that provide a rough approximation of the desired agent be-
havior. Behavior trajectories generated by these state ma-
chines executing in an interactive game environment are
used as training data for deep reinforcement offline policy
learning approaches. Finally, pretrained policies are transi-
tioned to an online learning approach where they are pre-
sented with the same environment but under a deep rein-
forcement learning regime with an open-ended reward func-
tion based on objective task performance.

Behavior cloning approaches are evaluated based on per-
formance in terms of learning stability (standard deviation
and interquartile range) and task performance in a military-
oriented kinetic engagement environment based on USC In-
stitute for Creative Technologies’ Rapid Integration & De-
velopment Environment (RIDE; Hartholt et al. 2021) plat-
form. We test several network architectures, including multi-
layer perceptrons (MLP) with and without frame-stacking
and Transformers (Vaswani et al. 2017). Our contributions
are as follows.
• We present an investigation into behavior cloning ap-

proaches in a military-oriented simulation environment.
In these types of environments, it is often crucial for
agents to demonstrate high levels of performance while
also adhering to realistic, predefined behaviors.

• We find that behavior cloning with Transformer mod-
els leads to agents that often outperform human-authored
state machines. Further, the agents retain many desired
behaviors that were defined in the state machines.

Related Work
Deep Reinforcement Learning
The concept of machines automatically learning desired se-
quential behavior in an environment based on rewarding
desired behavior and optimizing for maximizing the ex-
pected total return of reward was first explored by Bellman
(1957); Howard (1960); Andreae (1963); Michie (1963);
and Widrow, Gupta, and Maitra (1973). Deep reinforce-
ment learning (DRL) (Li 2017; François-Lavet et al. 2018;
Li 2018) is a highly general learning method that has
shown successful performance in diverse environments such
as self-driving vehicles (Goswami, Howley, and Mannion



2019), stock trading (Xiong et al. 2018), and text summa-
rization (Paulus, Xiong, and Socher 2018; Stiennon et al.
2020).

Imitation Learning
An open question is the best approach for tailoring these
general learning methods for improved performance within
a specific environment or domain (Xing et al. 2021; Wang et
al. 2022; Singireddy, Jha, and Velasquez 2023). One trade-
off that exists is the application of learning from previ-
ous demonstrations in the environment (Pomerleau 1991;
Ho and Ermon 2016) versus learning through real-time inter-
actions in the environment (Saad 1999). Offline learning can
learn more effectively using previously collected datasets to
more rapidly learn behavior (Abbeel and Ng 2004). How-
ever, online methods excel in situations where the distri-
bution of states is dynamic (Ross and Bagnell 2010). Ap-
proaches such as offline-to-online deep reinforcement learn-
ing (Uludağ et al. 2013) have been explored that can take ad-
vantage of the ability of offline learning methods to rapidly
learn a problem while still relying on online learning to han-
dle environments exhibiting non-stationarity. A simple form
of learning from expert demonstrations is behavior cloning,
first applied by Pomerleau (1991) to develop control algo-
rithms that artificially mimic expert demonstrations of land
vehicle drivers as a part of DARPA’s Strategic Computing
initiative program (Stefik 1985; Roland, Shiman, and others
2002). In behavior cloning, a model directly learns to map
environment states to agent actions based on previously per-
formed executions within the environment.

Reinforcement Learning with Transformers
In DRL, decision policies and other auxiliary functions
(e.g., value functions) that support decision-making are rep-
resented as neural networks. Recently, Chen et al. (2021)
proposed the utilization of the Transformer architecture
(Vaswani et al. 2017) to model decision policies that are
conditioned on past agent states / actions and the desired
return from a reward function. These decision Transformers
(DTs) outperform competing approaches on standard Atari
(Bellemare et al. 2013) and D4RL (Fu et al. 2020) bench-
marks in an offline learning setting. Other recent extensions
to the DT architecture in offline settings include the Trajec-
tory Transformer (Janner, Li, and Levine 2021), which uses
Transformers to produce learned distributions over poten-
tial agent trajectories, leverages a beam-search decoder as a
planning algorithm, and shows advantages in sparse-reward
and long-horizon tasks.

Transformers can also be applied in multi-modal deci-
sion domains, as demonstrated by the generalist agent pro-
posed by Reed et al. (2022) which uses the same architec-
ture and weights to perform functionalities such as playing
Atari games, acting as a chatbot, serving as a robotic arm
control system, and performing image captioning. Similarly,
(Baker et al. 2022) applies Transformers to learn with large-
scale observational data in the form of unlabeled demon-
stration videos to improve sample efficiency, particularly
with long and complex tasks that would be difficult to dis-
cover without human demonstration. Micheli, Alonso, and

Fleuret (2022) propose a Transformer-based world model
that can be trained to generate simulations of the environ-
ment, which makes model-based Reinforcement Learning
(RL) algorithms more sample-efficient.

Games and Simulations

Research in reinforcement learning has also been applied
towards training agents for military simulation environ-
ments (Stein and Kobrick 1984), with an emphasis on
opposing-force agents (Boron and Darken 2020). Opposing-
force agents are agents trained to specifically act as AI op-
ponents in simulation environments that replicate the ac-
tions and behaviors of real-world adversaries (Army 2017;
Bonasso 1988; White 1986). The development of opposing-
force agents can provide important insights into the behavior
and strategies of real-world adversaries in military scenar-
ios. For example, the Joint Semi-Automated Forces (JSAF)
system is a widely adopted military simulation environment
that has been used in many multi-national training exer-
cises (Hassaine et al. 2006). In these systems, opposing-
force agents are trained to simulate the behavior and tac-
tics of enemy forces, allowing trainees to improve their
decision-making processes in simulated military scenarios
(Turnitsa, Blais, and Tolk 2022). It is vital to improve the
realism of these opposing-force agents, as higher fidelity
training simulations have been shown to lead to better real-
world performance (Seymour et al. 2002; Ragan et al. 2015;
Whitmer, Ullman, and Johnson 2019).

Behavior Cloning Methodology
Behavior cloning (Pomerleau 1991) is a supervised learning
method for creating policies by using expert demonstrations.
Our evaluation focuses on the effectiveness of behavior
cloning in environments where only a simple, low-quality
model is available (e.g., a rough computational model pro-
duced by an expert) but an online environment exists in
which these models can be automatically evaluated and im-
proved through deeper refinement via reinforcement learn-
ing. This paper evaluates two different classes of behavior
cloning approaches:

1. A cloning approach that first trains a multi-layer percep-
tron (MLP; see Hastie et al. 2009) to represent the actions
of a finite state machine and then further refines this MLP
policy via proximal-policy optimization (PPO; Schulman
et al. 2017).

2. A cloning approach that trains a Generative Pretrained
Transformer (GPT; see Radford et al. 2019) to reproduce
the actions of a finite state machine and also refines this
GPT policy via PPO.

These approaches are evaluated in a “kill-box” domain
(Broyles et al. 2022), a common military fire control mea-
sure where threats are contained in terms of geography, tac-
tics, rules of engagement, or other constraints and forces can
freely engage. Figure 1 presents a high-level overview of our
architecture.



State
Machine

Behavior
Cloning PPO

Reward

Figure 1: Behavior cloning pipeline.

Terminology
We consider a set of states S where each s ∈ S represents an
agent state within an environment. Agents can take actions
a ∈ A and actions are assumed to take place in a discrete
fashion indexed by timestamp t. Agent actions are deter-
mined by either a finite state machine Q or a neural-policy
π, both of which map an agent state st to action at. Environ-
ments emit a reward for the agent r(si, ai), and the expected
return associated with a state is denoted V (st).

State Machine
Our architecture utilizes finite state machines (FSM) as an
initial source of supervised demonstration data. State ma-
chines are assumed to not necessarily be expert-level, but
simply execute relevant operations that sometimes achieve
reward in the environment. Within the kill-box domain, the
state machine fired its weapon if a threat was in front of the
controlled simulation entity, maneuvered towards a nearby
threat if one was to the left or right, and moved forward until
the forward direction was blocked, in which case the entity
moved backward.

MLP
We use a multi-layer perceptron (MLP) as the agent’s base
network architecture. The MLP receives the agent state st as
input and produces an intermediate state representation h:

hb
0 = st (1)

hb
i = ReLU(Wb

ih
b
i−1 + bb

i ) for i = 1, . . . , N (2)

where hb
i is the output of the ith layer in the base network,

Wb and bb are the weights and biases, ReLU is the recti-
fied linear unit activation function, and N is the number of
layers.

This intermediate representation is then fed through ad-
ditional layers to compute the agent’s policy π and the ex-
pected return V (see PPO section for the usage of V ):

ha
0 = hb

N (3)

hv
0 = hb

N (4)

ha
i = ReLU(Wa

i h
a
i−1 + ba

i ) for i = 1, . . . , N (5)
hv
i = ReLU(Wv

i h
v
i−1 + bv

i ) for i = 1, . . . , N (6)

π(a|s) = softmax(Wa
N+1h

a
N + ba

N+1) (7)

V (s) = Wv
N+1h

v
N + bv

N+1 (8)
where ha

i and hv
i are the outputs of the ith layer in the policy

and value networks respectively, Wa, Wv , ba, and bv are
the weights and biases for the policy and value networks.

Frame Stacking
We also experiment with frame-stacking to determine
whether past states can help the agent learn more effec-
tively. Frame stacking keeps track of the most recent states
⟨st−n..., st−1, st⟩, where n is the number of frames to stack,
and concatenates them together to be used as input to the
agent. This replaces Eq (1) with the following:

hb
0 = Concat(st−n..., st−1, st) (9)

Mnih et al. achieved state-of-the-art results on Atari
games by using deep Q-learning and stacking the last 4
frames of history together to be used as input to their agents
(Mnih et al. 2013; 2015).

Transformer
Recently, Transformers (Vaswani et al. 2017) have been used
in domains such as text generation (Radford et al. 2019) and
computer vision (He et al. 2022) to effectively model se-
mantic knowledge in high-dimensional space. Transform-
ers have also been used successfully in offline RL-based
sequence modeling problems by conditioning on previous
states, actions, and returns (Chen et al. 2021; Janner, Li, and
Levine 2021).

Similarly, in this work, a history of the agent’s ob-
servations is used to generate a sequence of past states
⟨st−n..., st−1, st⟩. This sequence is encoded using a
decoder-only Transformer (specifically GPT-2 Small; Rad-
ford et al. 2019), with randomly-initialized weights. A
Transformer block uses a multi-head attention mechanism
followed by a feed-forward network to process a series of
states.

SelfAttn(Q,K, V ) = softmax

(
QKT

√
dk

)
V (10)

MultiHead(Q,K, V ) = ⊙(head1, . . . , headh)W
O (11)

headi = SelfAttn(QWQ
i ,KWK

i , V WV
i ) (12)

TransformerBlock(h) = LayerNorm(u+ FFN(u)) (13)
u = LayerNorm(h+ MultiHead(h, h, h)) (14)

where dk is the dimensionality of the keys K and values
V in the self-attention mechanism, ⊙ is the concatenation
operator, and h is the input to the Transformer block. The
full Transformer is a series of Transformer blocks.

Finally, Eqs. (1 - 2) are replaced with the following.

x = st−n..., st−1, st (15)

hb
N = Transformer(x) (16)

which replaces the base feed-forward network layers with
a Transformer.



Behavior Cloning
After choosing a base network architecture – either MLP,
MLP with frame stacking, or Transformer – the network
is trained using behavior cloning. First, a large number of
agent trajectories are collected by running the FSM in the
kill-box environment. Each trajectory contains the state and
action taken for every step. In our experiments, we collect
data over 1000 episodes with 1000 steps per episode, total-
ing 1M steps. Next, these collected trajectories are used as
training data for the network. The network is trained to pre-
dict the next action taken at each step given the state (or set
of recent states), in a supervised manner. It is trained to mini-
mize the cross-entropy loss between the predicted action and
the FSM’s action.

LBC = − 1

C

C∑
i=1

ai log πi (17)

where C is the number of possible actions and ai is the
FSM’s label given to the action.

Effective training using this process results in a policy π
that models or “clones” the behavior of the FSM. PPO is
used to further refine this policy using online learning.

PPO
Proximal Policy Optimization (PPO; Schulman et al. 2017)
is used to further refine the policy π via online learning by
exposing it to the kill-box environment and updating the pol-
icy via policy gradient by maximizing the expected reward.
The policy’s loss function seeks to maximize the advantage
A, which is the incremental reward of taking the next action
from the current state.

Lπ(θ) = −Et

[
πθ(at|st)
πθold(at|st)

·A(st, at)

]
(18)

where ∥θ − θold∥ ≤ ϵ (19)

A(s, a) = r(s, a) + γV (s′)− V (s) (20)

where πθ is the current policy and πθold is a previous ver-
sion of the policy, r(s, a) is the reward for taking action a,
γ is the discount factor, and s′ is the next state after taking
action a.

The value function’s loss is computed as the Mean
Squared Error.

LV (θ) =
1

N

N∑
t=1

(Vθ(st)− yt)
2 (21)

where yt is the target expected return for state st, and N
is the total number of training samples.

The final loss function is the sum of the policy and value
function losses.

LPPO(θ) = Lπ(θ) + LV (θ) (22)

Figure 2: Kill-box environment. The agent (center) must fire
at enemy targets while avoiding friendly targets.

Event Reward
Shooting enemy +1
Shooting ally -4
Firing gun and not hitting anything -2
Reloading with shots fired +1
Reloading with no shots fired -2
Walking into boundary walls -10

Table 1: Rewards used in kill-box experiments

Evaluation
The kill-box experimental setup consists of 100 stationary
soldiers – half are enemy targets and half are friendly tar-
gets – in a space enclosed by 4 walls (see Figure 2). The
agent is rewarded for firing at enemy targets and penal-
ized for firing at anything else (see Table 1 for full re-
ward function). We test the following methods. FSM is a
manually-created state machine. MLP is a baseline using a
feed-forward network trained only with PPO (no behavior
cloning). MLP+BC is our method of using a feed-forward
network that is trained to clone FSM’s behavior and then re-
fined using PPO. MLP+BC+FS uses frame stacking in ad-
dition. Transformer+BC uses a decoder-only Transformer in
place of a feed-forward network.

We evaluate the methods from two perspectives: 1) agent
task performance and 2) stability of training. However, dif-
ferent training approaches tend to have different hyperpa-
rameters, which greatly influence a model’s learning perfor-
mance. In order to more effectively compare methodologies,
we perform a sweep over the hyperparameter values for each
methodology. Current reinforcement learning algorithms are
notoriously unstable, difficult to train, and sensitive to hy-
perparameter values (Sprague 2015; Henderson et al. 2018;
Zhang et al. 2021), which necessitates searching over the
possible hyperparameter values to obtain positive results
(Paine et al. 2020; Hauser 2021). There are a combinato-
rially explosive number of hyperparameter combinations for
each training approach, that makes exhaustively searching
for the best set of hyperparameters intractable. Instead, we
use the Weights & Biases (Biewald 2020) library to ex-
plore the values of hyperparameters that have the great-
est influence over training performance and outcomes us-



Method Mean Med. Max σ

MLP -57.26 -17.01 78.60 129.08
MLP + BC -154.84 18.18 144.38 1029.28
MLP + BC + FS 8.10 14.33 391.76 97.18
Transformer + BC 59.55 26.69 697.18 110.73
FSM 36.52 28.55 255.51 39.11

Table 2: Agent performance comparison (measured by re-
ward score over 50 runs) in kill-box environment.

ing Bayesian optimization (Močkus 1975). This enables us
to explore a wider set of training parameters in a shorter
amount of time. We perform hyperparameter sweeps for
each of methodology for 50 runs each, and computed the
mean, median, and maximum performance over the 50 runs
for each methodology (Table 3).

Results
Table 2 presents the performance of each method, measured
as the reward score. The MLP baseline using only PPO (no
behavior cloning) gives median and max scores that are sig-
nificantly lower than the methods using behavior cloning.
This shows that online reinforcement learning approaches
alone are insufficient for modeling interactive agents in our
domain, whose expected behaviors may be too difficult to
learn from scratch. Behavior cloning allows the agent to
learn from the state machine’s demonstrations and helps to
improve the overall performance of the agent. The methods
that use behavior cloning in combination with PPO outper-
form the MLP baseline by a large margin, demonstrating the
importance of incorporating prior knowledge and experience
into the learning process.

Next, we assess the value of frame-stacking by compar-
ing MLP+BC to MLP+BC+FS. MLP+BC+FS has signif-
icantly higher mean and max scores (albeit slightly lower
median score). In addition, MLP+BC+FS has a much lower
standard deviation. The large difference in mean and stan-
dard deviation are mostly driven by a few outlier runs
from MLP+BC, which were as low as -7000. Prior work
has shown that it can be challenging to transition from an
offline to an online RL setting (Rajeswaran et al. 2017;
Fujimoto, Meger, and Precup 2018), which we hypothesize
is the case with MLP+BC. Our results indicate that includ-
ing a history of past observations, using frame stacking, can
lead to better performance and higher stability of training.
We hypothesize that the contextual information from pre-
vious frames prevents the agent from going too off-course
since the agent can learn to use the past frames to better un-
derstand its current situation.

The best-performing method is Transformer+BC, with
the largest mean, median, and max scores. The Transformer
has shown to be a powerful method for sequence model-
ing, outperforming methods using long short-term mem-
ory (LSTM) or feed-forward networks (i.e. MLP) in many
domains (Vaswani et al. 2017; Dosovitskiy et al. 2021;
Arnab et al. 2021). Transformers can more effectively model

R
ew

ar
d

-150

-100

-50

0

50

100

150

MLP MLP+BC

MLP+BC+FS Transformer+BC

FSM

Figure 3: Box plot comparing the reward scores of each
method. Outliers exist that are greater than 150 and less than
-150, but the plot has been truncated for readability.

sequences of data – in our case, agent observations and ac-
tions – using an attention mechanism. Additionally, prior
work has shown that Transformers with a longer context
length outperform simple frame-stacking on Atari games
(Chen et al. 2021). Our results in a military-oriented kinetic
environment seem to follow this trend. The mean and max
scores of Transformer+BC are higher than those of the orig-
inal FSM from which it was copied, indicating our method
of refining a behavior-cloned model through PPO can lead
to agents that surpass the original state machine.

Figure 3 presents our results with interquartile ranges.
Again, we see the Transformer outperforms other methods,
including the FSM. The Transformer does however have
slightly lower median score, along with a higher standard
deviation and a larger interquartile range, indicating there is
a greater amount of variability between runs. Nevertheless,
the Transformer presents a greater likelihood of producing
exceptional agents with rewards exceeding 50, given multi-
ple runs are conducted. Interestingly, MLP+BC has similar
interquartile ranges to MLP+BC+FS, whereas the standard
deviations in Table 2 between them are very different. This
shows that most runs without frame stacking will be in the
typical range, but it will be more likely to produce an unsta-
ble, degenerate agent.

Another benefit from behavior cloning is that the resulting
agent is of higher quality while still retaining much of the de-
sired behavior defined in the state machine. For example, in
the FSM used for these experiments, a “reload” state is acti-
vated whenever the agent transitions to the moving forward
state from any other state. This is desired to ensure the agent
always has enough ammunition when it needed to fire. A
qualitative examination of the best-performing Transformer-
based agent showed that the agent retained this behavior. An
agent trained from scratch, on the other hand, would be un-
likely to learn this behavior since it is not an optimal step to
obtaining the maximum reward.



Hyperparameter Values Pearson Spearman
Network Architecture

Context length 1 – 20 -0.20 -0.09
Attention heads 2 – 8 -0.15 -0.15
Transformer layers 4 – 8 -0.29 -0.18
π and v layers 1 – 4 0.12 -0.08

(Pretraining) Behavior-Cloning
Batch size 128 – 1024 -0.32 -0.07
Learning rate 1−6 − 1−3 0.04 0.11

(Fine-tuning) PPO
Batch size 128 – 1024 0.16 0.11
Learning rate 1−6 − 1−3 -0.10 -0.17
Batches per update 4 – 100 -0.17 -0.26
Number of updates 3 – 10 -0.25 -0.27
Training steps 0.1M – 2M -0.06 0.31
Curiosity 1−3 − 1−1 -0.14 0.08

RIDE Environment
Episode length 1k – 5k 0.28 0.45
Process interval 1 – 10 -0.70 -0.78

Table 3: Hyperparameter values and correlation coefficients
from hyperparameter tuning Transformer+BC in our exper-
iments

Hyperparameter searching is conducted over the 50 runs
of our models (MLP, MLP+BC, MLP+BC+FS, and Trans-
former+BC) and to determine the extent to which each hy-
perparameter affects agents reward scores. Table 3 shows the
correlation coefficients of each hyperparameter for training
a Transformer+BC model, which we consider the training
method with the best performance. The analysis of hyperpa-
rameter correlations with performance reveals that the du-
ration of episodes and intervals between processes in the
simulation environment have the greatest influence. Episode
length affects training due to controlling if the model is
given enough time to explore the problem space and ac-
curately evaluate the model’s effectiveness. Process interval
controls the decision frequency of the agent. Smaller process
intervals may result in actions being terminated prematurely
which could negatively impact performance. The number of
layers in the Transformer architecture and the number of
attention heads also have a notable impact on model per-
formance. PPO fine-tuning is impacted moderately by the
number of batches included in each gradient update (batches
per update) and number of updates. During pre-training, the
batch size and learning rate utilized in behavior cloning did
not have a large impact on performance. We attribute these
last correlations to the relatively limited size of the datasets
that the training processes were given. Correlations for the
other methods can be found in the appendix.

Table 4 shows the mean accuracies of each method af-
ter the pretraining phase and before fine-tuning with PPO.
Each method is evaluated on an unseen test set of trajecto-
ries (state and action pairs) produced by the FSM, and the

Method Accuracy σ

MLP + BC 95.50 0.41
MLP + BC + FS 99.28 0.48
Transformer + BC 99.60 0.25

Table 4: Mean accuracy of each method on unseen test set
of FSM trajectories after pretraining phase

model is measured on how often it predicts the correct ac-
tion given the state. All three methods achieve high accu-
racy above 95%, however, MLP+BC is significantly lower
than the other methods. It has 95.5% accuracy compared to
MLP+BC and Transformer+BC which both obtain greater
than 99% accuracy. This is likely due to lacking observa-
tions from previous time steps in order to make a decision
(i.e., no frame stacking). With only the current observation,
it is more difficult to encode a plan of what to do next. For
example, say the agent reaches a wall, then takes a few steps
back. An agent with a history of the past observation would
remember that it had seen a wall and taken steps back, so it
could then infer that the next action should be to turn away
from the wall. An agent with only the current observation
will not remember the past, and thus it is more likely to
make a mistake, such as running back into the wall. This
phenomenon may also account for the degenerate outliers in
MLP+BC that give poor reward scores.

Conclusion
This paper showcases the effectiveness of behavior cloning
approaches in simulation or gaming environments where
state-of-the-art methods like PPO struggle to produce agents
with acceptable task performance. Behavior cloning offers
game designers and other users a straightforward method for
taking a limited behavior that operates sub-optimally or only
in a small part of the environment, and expanding it to cover
a more complex environment while retaining important as-
pects of the user’s original behavior. Additionally, behav-
ior cloning approaches demonstrate stability during training,
outperforming PPO baselines. Practitioners should consider
using these methods in environments that are relatively sta-
ble and do not undergo significant changes over time.

Future extensions of this work include exploring inter-
leaved offline and online stages of training, which could mit-
igate PPO’s potential to forget behaviors learned via behav-
ior cloning. Additionally, since FSM methods can be labor-
intensive to author, alternative approaches such as providing
natural language instructions that can be converted to code
using code generation methods (Le, Chen, and Babar 2020;
Lehman et al. 2022) could be investigated for expressing de-
sired behavior.

Acknowledgments
The research reported in this document/presentation was
performed in connection with contract number W912CG-
20-P-0006 with the U.S. Army Contracting Command - Ab-
erdeen Proving Ground (ACC-APG). The views and con-
clusions contained in this document/presentation are those



of the authors and should not be interpreted as presenting
the official policies or position, either expressed or implied,
of ACC-APG, CCDC-SC or the U.S. Government unless so
designated by other authorized documents. Citation of man-
ufacturer’s or trade names does not constitute an official en-
dorsement or approval of the use thereof. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion hereon.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1.
Andreae, J. H. 1963. Stella: A scheme for a learning ma-
chine. In In Proceedings of the 2nd IFAC Congress, Basle,
497–502.
Army, H. D. o. t. 2017. Tc 7-100.2 Opposing Force Tac-
tics: December 2011. CreateSpace Independent Publishing
Platform.
Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.;
and Schmid, C. 2021. Vivit: A video vision transformer. In
Proceedings of the IEEE/CVF international conference on
computer vision, 6836–6846.
Baker, B.; Akkaya, I.; Zhokhov, P.; Huizinga, J.; Tang, J.;
Ecoffet, A.; Houghton, B.; Sampedro, R.; and Clune, J.
2022. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. arXiv preprint arXiv:2206.11795.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Bellman, R. E. 1957. Dynamic Programming. Princeton:
Princeton University Press.
Biewald, L. 2020. Experiment tracking with weights and
biases. Software available from wandb.com.
Bonasso, R. P. 1988. What ai can do for battle management:
A report of the first aaai workshop on ai applications to battle
management. AI Magazine 9(3):77–77.
Boron, J., and Darken, C. 2020. Developing combat behav-
ior through reinforcement learning in wargames and simula-
tions. In 2020 IEEE Conference on Games (CoG), 728–731.
IEEE.
Broyles, C.; Frei, N.; Botten, T.; Krywiski, J.; Kastenholz,
T.; and Sanders, B. 2022. Developing our soldiers to out-
think, outmaneuver, and outfight the enemy. infantry.
Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I. 2021.
Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing sys-
tems 34:15084–15097.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An image is worth 16x16 words: Transformers for image

recognition at scale. In International Conference on Learn-
ing Representations.
François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare,
M. G.; and Pineau, J. 2018. An introduction to deep re-
inforcement learning. CoRR abs/1811.12560.
Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2020. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219.
Fujimoto, S.; Meger, D.; and Precup, D. 2018. Off-policy
deep reinforcement learning without exploration. In Inter-
national Conference on Machine Learning.
Goswami, K.; Howley, E.; and Mannion, P. 2019. Decision
Making for Autonomous Car Driving using Deep Reinforce-
ment Learning(DRL). Ph.D. Dissertation, National Univer-
sity Of Ireland, Galway.
Hartholt, A.; McCullough, K.; Fast, E.; Reilly, A.; Leeds,
A.; Mozgai, S.; Ustun, V.; and Gordon, A. 2021. Introducing
ride: Lowering the barrier of entry to simulation and training
through the rapid integration & development environment.
In Proceedings of the 2021 Virtual Simulation Innovation
Workshop.
Hassaine, F.; Abdellaoui, N.; Yavas, A.; Hubbard, P.; and
Vallerand, A. L. 2006. Effectiveness of jsaf as an open
architecture, open source synthetic environment in defense
experimentation. Technical report, Defence Research and
Development Canada (DRDC) Ottawa.
Hastie, T.; Tibshirani, R.; Friedman, J. H.; and Friedman,
J. H. 2009. The elements of statistical learning: data mining,
inference, and prediction, volume 2. Springer.
Hauser, K. 2021. Hyperparameter tuning for reinforcement
learning with bandits and off-policy sampling. Master’s the-
sis, Case Western Reserve University.
He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; and Girshick,
R. 2022. Masked autoencoders are scalable vision learners.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 16000–16009.
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup,
D.; and Meger, D. 2018. Deep reinforcement learning that
matters. Proceedings of the AAAI Conference on Artificial
Intelligence 32(1).
Ho, J., and Ermon, S. 2016. Generative adversarial imi-
tation learning. Advances in neural information processing
systems 29.
Howard, R. 1960. Dynamic Programming and Markov Pro-
cesses. Cambridge, MA: MIT Press.
Janner, M.; Li, Q.; and Levine, S. 2021. Offline reinforce-
ment learning as one big sequence modeling problem. Ad-
vances in neural information processing systems 34:1273–
1286.
Le, T. H. M.; Chen, H.; and Babar, M. A. 2020. Deep learn-
ing for source code modeling and generation: Models, ap-
plications and challenges. CoRR abs/2002.05442.
Lehman, J.; Gordon, J.; Jain, S.; Ndousse, K.; Yeh, C.; and
Stanley, K. O. 2022. Evolution through large models.



Li, Y. 2017. Deep reinforcement learning: An overview.
CoRR abs/1701.07274.
Li, Y. 2018. Deep reinforcement learning. CoRR
abs/1810.06339.
Micheli, V.; Alonso, E.; and Fleuret, F. 2022. Trans-
formers are sample efficient world models. arXiv preprint
arXiv:2209.00588.
Michie, D. 1963. Experiments on the mechanisation of
game learning. Computer Journal 1:232–263.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. nature
518(7540):529–533.
Močkus, J. 1975. On bayesian methods for seeking the
extremum. In Optimization Techniques IFIP Technical Con-
ference: Novosibirsk, July 1–7, 1974, 400–404. Springer.
Paine, T. L.; Paduraru, C.; Michi, A.; Gulcehre, C.; Zolna,
K.; Novikov, A.; Wang, Z.; and de Freitas, N. 2020. Hyper-
parameter selection for offline reinforcement learning. arXiv
preprint arXiv:2007.09055.
Paulus, R.; Xiong, C.; and Socher, R. 2018. A deep re-
inforced model for abstractive summarization. In Interna-
tional Conference on Learning Representations.
Pomerleau, D. A. 1991. Efficient training of artificial neural
networks for autonomous navigation. Neural computation
3(1):88–97.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsuper-
vised multitask learners. OpenAI blog 1(8):9.
Ragan, E. D.; Bowman, D. A.; Kopper, R.; Stinson, C.;
Scerbo, S.; and McMahan, R. P. 2015. Effects of field of
view and visual complexity on virtual reality training effec-
tiveness for a visual scanning task. IEEE transactions on
visualization and computer graphics 21(7):794–807.
Rajeswaran, A.; Kumar, V.; Gupta, A.; Vezzani, G.; Schul-
man, J.; Todorov, E.; and Levine, S. 2017. Learning com-
plex dexterous manipulation with deep reinforcement learn-
ing and demonstrations. arXiv preprint arXiv:1709.10087.
Reed, S.; Zolna, K.; Parisotto, E.; Colmenarejo, S. G.;
Novikov, A.; Barth-Maron, G.; Gimenez, M.; Sulsky, Y.;
Kay, J.; Springenberg, J. T.; et al. 2022. A generalist agent.
arXiv preprint arXiv:2205.06175.
Roland, A.; Shiman, P.; et al. 2002. Strategic computing:
DARPA and the quest for machine intelligence, 1983-1993.
MIT Press.
Ross, S., and Bagnell, D. 2010. Efficient reductions for
imitation learning. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics,
661–668. JMLR Workshop and Conference Proceedings.

Saad, D. 1999. On-line learning in neural networks. Cam-
bridge University Press.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Seymour, N. E.; Gallagher, A. G.; Roman, S. A.; O’brien,
M. K.; Bansal, V. K.; Andersen, D. K.; and Satava, R. M.
2002. Virtual reality training improves operating room per-
formance: results of a randomized, double-blinded study.
Annals of surgery 236(4):458.
Singireddy, S.; Jha, S. K.; and Velasquez, A. 2023. Au-
tomaton distillation: A neuro-symbolic transfer learning ap-
proach for deep RL.
Sprague, N. 2015. Parameter selection for the deep q-
learning algorithm. In Proceedings of the Multidisciplinary
Conference on Reinforcement Learning and Decision Mak-
ing (RLDM), 24.
Stefik, M. 1985. Strategic computing at darpa: Overview
and assessment. Communications of the ACM 28(7):690–
704.
Stein, E., and Kobrick, J. 1984. A brief history of the use
of simulation techniques in training and performance assess-
ment. Technical report, United States Army Research Insti-
tute of Environmental Medicine (USARIEM).
Stiennon, N.; Ouyang, L.; Wu, J.; Ziegler, D.; Lowe, R.;
Voss, C.; Radford, A.; Amodei, D.; and Christiano, P. F.
2020. Learning to summarize with human feedback. In
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; and
Lin, H., eds., Advances in Neural Information Processing
Systems, volume 33, 3008–3021. Curran Associates, Inc.
Turnitsa, C.; Blais, C.; and Tolk, A. 2022. Simulation and
wargaming. Wiley Online Library.
Uludağ, G.; Kiraz, B.; Etaner-Uyar, A. Ş.; and Özcan, E.
2013. A hybrid multi-population framework for dynamic
environments combining online and offline learning. Soft
Computing 17:2327–2348.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems 30.
Wang, Z.; Zhang, K.; Zhang, J.; Chen, G.; Ma, X.; Xin, G.;
Kang, J.; Zhao, H.; and Yang, Y. 2022. Deep reinforce-
ment learning and adaptive policy transfer for generalizable
well control optimization. Journal of Petroleum Science and
Engineering 217:110868.
White, G. B. 1986. Artificial intelligence concepts and
the war gaming environment: A case study using the tempo
war game. Technical report, Air Force Inst of Tech Wright-
Patterson AFB OH School of Engineering.
Whitmer, D. E.; Ullman, D.; and Johnson, C. I. 2019. Vir-
tual reality training improves real-world performance on a
speeded task. In Proceedings of the human factors and er-
gonomics society annual meeting, volume 63, 1218–1222.
SAGE Publications Sage CA: Los Angeles, CA.
Widrow, B.; Gupta, N. K.; and Maitra, S. 1973. Pun-
ish/reward: Learning with a critic in adaptive threshold sys-



tems. IEEE Transactions on Systems, Man, and Cybernetics
3:455–465.
Xing, J.; Nagata, T.; Chen, K.; Zou, X.; Neftci, E.; and
Krichmar, J. L. 2021. Domain adaptation in reinforce-
ment learning via latent unified state representation. CoRR
abs/2102.05714.
Xiong, Z.; Liu, X.; Zhong, S.; Yang, H.; and Walid, A. 2018.
Practical deep reinforcement learning approach for stock
trading. CoRR abs/1811.07522.
Zhang, B.; Rajan, R.; Pineda, L.; Lambert, N. O.;
Biedenkapp, A.; Chua, K.; Hutter, F.; and Calandra, R.
2021. On the importance of hyperparameter optimiza-
tion for model-based reinforcement learning. CoRR
abs/2102.13651.



Hyperparameter Correlations
Correlations between hyperparameters and reward score for
non-Transformer methods are shown in Tables 5 - 7.

Hyperparameter Pearson Spearman
Network Architecture

Base layers -0.22 -0.38
Hidden size -0.17 -0.13
π and v layers 0.12 0.14

PPO
Curiosity -0.03 -0.22
Learning rate 0.03 0.31
Batch size -0.12 -0.14
Batches per update -0.24 -0.31
Number of updates -0.10 -0.04
Training steps 0.45 0.66

RIDE Environment
Process interval 0.43 0.30
Episode length -0.03 -0.18

Table 5: MLP correlations

Hyperparameter Pearson Spearman
Network Architecture

Base layers 0.18 -0.06
Hidden size -0.03 -0.09
π and v layers -0.14 -0.06

(Pretraining) Behavior-Cloning
Batch size -0.10 0.03
Learning rate 0.12 -0.03

(Fine-tuning) PPO
Curiosity -0.08 -0.22
Learning rate -0.12 -0.33
Batch size -0.09 -0.16
Batches per update -0.11 -0.19
Number of updates 0.09 -0.00
Training steps 0.01 0.15

RIDE Environment
Process interval 0.39 0.10
Episode length -0.09 0.09

Table 6: MLP+BC correlations

Hyperparameter Pearson Spearman
Network Architecture

Base layers -0.15 -0.19
Hidden size 0.02 -0.11
π and v layers -0.05 -0.04
Frames to stack 0.31 0.11

(Pretraining) Behavior-Cloning
Batch size 0.05 -0.03
Learning rate -0.25 -0.19

(Fine-tuning) PPO
Curiosity -0.16 -0.22
Learning rate -0.30 -0.51
Batch size 0.13 0.09
Batches per update -0.03 -0.21
Number of updates -0.12 -0.13
Training steps 0.23 0.20

RIDE Environment
Process interval -0.05 -0.41
Episode length 0.03 0.01

Table 7: MLP+BC+FS correlations


