
    
 

A Multi-Modal Intelligent User Interface for 
Supervisory Control of Unmanned Platforms 

 

Glenn Taylor, Richard Frederiksen, Jacob Crossman, Michael Quist, Patrick Theisen 
Soar Technology, Inc. 
Ann Arbor, MI, USA 

{glenn, rdf, jcrossman, quist, patrick.theisen}@soartech.com 
 
 

Abstract— Typical human-robot interaction (HRI) is through 
tele-operation or point-and-click interfaces that require extensive 
training to become proficient and require the user’s complete 
attention to operate. For unmanned platforms to reach their full 
potential, users must be able to exert supervisory control over 
those platforms. This requires more effective means of communi-
cation in both directions, including high-level commands given to 
the vehicle and meaningful feedback to the user. Our aim is to 
reduce the training requirements and workload needed to inter-
act with unmanned systems effectively and to raise the level of 
user interaction with these systems so that supervisory control is 
possible. In this paper we describe an intelligent user interface, 
called the Smart Interaction Device (SID) that facilitates a dia-
logue between the user and the unmanned platform. SID works 
with the user to understand the user’s intent, including asking 
any clarification questions. Once an understanding is established, 
SID translates that intent into the language of the platform. SID 
also monitors the platform’s progress in order to give feedback to 
the user about status or problems that arise. We have incorpo-
rated multiple input modalities, including speech, gesture, and 
sketch as natural ways for a user to communicate with unmanned 
platforms. SID also provides multiple modes of feedback, includ-
ing graphics, video and speech. We describe SID’s architecture 
and some examples of its application in different domains. 

Keywords: HRI Multi-modal Interfaces, HRI Applications, 
Supervisory Control, Interaction Components 

I.  INTRODUCTION 
Unmanned platforms that have been deployed in the field 

for military use tend to be remotely controlled through an Op-
erator Control Unit (OCU). OCUs typically allow for low-level 
tele-operation (e.g., joystick control) or point-and-click-style 
interfaces (e.g., menus, buttons) that require fine-grained task-
ing. These systems currently require extensive training. US 
military specialties in unmanned platforms require roughly 7 
months of training in classroom and practical application 
courses. Even with all this training, human error is still cited as 
the dominant cause of 80% of all UAV crashes [1]. On top of 
this, typical OCUs require the full attention of the user to task 
the robot and monitor its progress [2]. This takes away from the 
users’ ability to maintain their own situational awareness or 
perform other tasks. 

A current trend in human-robot interaction research is to-
ward supervisory control, where the user’s job changes to one 
of managing the robot rather than controlling it inch by inch. 

Sheridan [3] outlines three requirements for supervisory con-
trol: autonomy, high-level commands, and situational aware-
ness. This occurs routinely in human teams that include a lead-
er and a subordinate: the leader gives a high-level task, and the 
subordinate is given some autonomy to perform the task while 
at the same time keeping the leader informed of progress or 
problems. For supervisory control in human-robot teams, the 
same conditions must hold: the robot must have autonomy to 
perform at least some tasks, must accept high-level tasking (far 
above tele-operation), and must provide feedback to the user to 
help maintain the user’s awareness. Autonomy in unmanned 
platforms has been slowly increasing over time, but OCUs 
have tended to lag behind in terms of providing high-level task-
ing, providing effective situational awareness to the user, and 
in usability generally. 

Over the last few years, we have been developing the Smart 
Interaction Device (SID) whose purpose is to enable a user to 
work at the level of supervisory control using natural ways of 
interacting with the robot. Our approach with SID follows 
Sheridan’s three requirements. SID takes the form of an intelli-
gent user interface that facilitates a high-level, multi-modal 
interaction between a user and a robot. SID leverages the au-
tonomy on the platform, but also adds some intelligence in the 
user interface itself that helps to translate high-level user com-
mands into robot commands. SID also helps maintain user situ-
ational awareness by providing feedback to the user, either by 
request or based on expected protocols. The result is that the 
user can spend less time minding the unmanned vehicle and 
more time paying attention to his or her surroundings, working 
on other tasks, or managing multiple vehicles. 

In the rest of this paper, we frame our approach in the con-
text of other work in the field, describe the system in detail, and 
describe some applications of the system in a range of real and 
simulated unmanned platforms. 

II. PRIOR WORK 
As mentioned, most OCU systems today are tele-operation 

or point-and-click interfaces. Some of the more advanced HRI 
systems in military robot research have experimented with 
speech interfaces, but typically these are characterized by one-
shot interactions: the user issues a command and the system 
performs the task, perhaps with minimal acknowledgment [4]. 
This interaction is still fairly close to the primitives of the plat-
form, and does not include the kinds of dialogue that one 

This work was partially funded by the Office of Naval Research. 

Presented at Collaboration Technologies and Systems  
Collaborative Robots and Human Robot Interaction Workshop 2012 



 
 

would see in similar human communication. In contrast, our 
goal is to approach the language that people use when com-
municating to each other in these situations. 

Academic research has gone much further in terms of inter-
active robotic systems. There has been extensive work on dia-
logue systems for robots, including work in direction-giving [5] 
and spatial language [6]. Most similar to SID in terms of archi-
tecture is the WITAS dialogue system [7]. WITAS focused on 
UAV operations, specifically multi-threaded conversations and 
coordination of joint activities such as target tracking. SID 
shares much in common with the WITAS architecture, includ-
ing similar core components for dialogue management and task 
representation. However, rather than the multi-agent paradigm 
used by WITAS, we take a knowledge-based system approach, 
using the Soar cognitive architecture [8, 9] as the basis for SID. 
Also, whereas WITAS supported speech with mouse clicks to 
indicate positions for a UAV to fly, SID supports other modali-
ties natural to these domains such as sketching and gesture 
simultaneous with speech. 

The work of Oviatt and her colleagues is well-known 
among multi-modal interfaces, exemplified in systems such as 
QuickSet [10, 11] that combines speech and pen-based input. 
In SID, we borrow from the underlying multi-modal fusion 
algorithms in this work, as described by Johnson et al [12]. We 
implement these algorithms within the Soar architecture as a 
way to perform very fast unification and to leverage multiple 
sources of knowledge both for the fusion of input sources and 
for the resolution of multiple interpretations. 

There has been a recent boom in “natural interfaces” made 
possible by inexpensive sensor systems like the Microsoft Ki-
nect. This has spawned numerous research and demonstration 
systems that show simple gestures like “raised/lowered arm” to 
trigger a UAV to take off or land (for example, [13]). Rather 
than inventing new protocols, our approach has been much 
more user-focused in that we have worked to discover how our 
expected users interact in today’s operations and use that as a 
starting point for understanding how users would like to inter-
act with unmanned platforms. 

III. BACKGROUND: NATURAL INTERACTION 

Our goal in building HRI systems is to provide natural 
ways for users to interact with unmanned platforms. What con-
stitutes natural interaction? We look to human interaction to 
help answer this question, and the answer varies depending on 
the domain and on the situation. For face-to-face contact, peo-
ple naturally use speech and gesture to communicate. For non-
face-to-face communication, gesture becomes less useful and 
speech or text/chat more prevalent. People often use shared 
artifacts like maps to refer to or even drawn on, especially in 
spatially oriented domains. Furthermore, mixing modes togeth-
er has been shown to be natural and often more efficient in 
spatially oriented domains [14]. In addition to leveraging the 
work of others, we have conducted our own interviews and 
observations of our expected users performing the kinds of 
tasks that the military hopes will soon include unmanned plat-
forms, in naturalistic settings and in Wizard of Oz studies. We 
expect that if robots can interact in ways similar to how people 

interact in these settings, those robots will be easier to use and 
require less training for users. 

Another aspect of naturalness comes from dialogue itself. 
Human communication happens over time, by way of multiple 
communicative acts. Dialogue is a way to mitigate the frailties 
of human communication so that a task gets done. Dialogue is 
so important in human communication that it is embedded in 
military communications as a matter of doctrine: a speaker 
issues a command, and the hearer repeats it back to make sure 
everything was understood properly. This process helps in-
crease the robustness of communication and understanding 
between participants, and is an essential element to carry over 
to human-machine interfaces. 

Because people use dialogues regularly, they expect certain 
forms of interaction, whether it is in the back and forth proto-
cols of command-and-acknowledge, in the use of clarification 
questions, or in the brevity afforded by using referring expres-
sions (e.g., pronouns) to minimize the amount of language 
needed. Especially in supervisory control in human teams (e.g., 
lead/subordinate roles), there are expectations of acknowledg-
ments and feedback as tasks progress. When these expectations 
are broken, situation awareness and task completion suffers. 
Dialogue has a secondary effect of decreasing the workload of 
participants. By allowing references to earlier parts of the con-
versations, there is less work for the speaker. Hearers also ex-
pect this kind of brevity, and have to work harder when it is not 
present in the dialogue [14]. To be considered natural, HRI 
systems must meet these human expectations about conversa-
tions.  

The next sections describe our technical approach to mak-
ing natural interfaces for supervisory control, in the form of our 
Smart Interaction Device (SID), and the applications of SID to 
various robotic platforms. 

IV. APPROACH: INTELLIGENCE IN THE INTERFACE 

Our general approach to building natural interaction sys-
tems for unmanned platforms has been to make the user inter-
face smarter, in the tradition of intelligent user interfaces [15]. 
The user interface is “smart” in the sense that it lets a user spec-
ify higher-level input and it works to understand that input in 
user terms, then translates that input into robot terms. The sys-
tem also interprets user inputs across multiple input modalities, 
and combines them to a single unified meaning. The goal is to 
let the user think and communicate at the level of supervisory 
control tasks without worrying about the details of how a par-
ticular unmanned platform has to be told to perform that task.  

To accommodate the kinds of high-level interactions that 
occur in these domains, an intelligent user interface must have 
some core capabilities for managing dialogue with a user, 
translating the user commands into robot-level tasks, and moni-
toring the progress of the robot to ensure that it is proceeding 
correctly and to provide feedback to the user. As shown in Fig-
ure 1, SID consists of a domain-independent set of core mod-
ules (“SID Core”) that are designed to fulfill these require-
ments. SID additionally includes input-device-specific, do-
main-specific and platform-specific layers, each of which may 
be customized to a particular application. Different ways of 



 
 

interacting with the robot and different robot capabilities neces-
sitate different user-facing and robot-facing software interfaces.  

Domain-independent knowledge in SID consists of rules for 
how to manage dialogues, how to break a task down into finer 
tasks, and how to maintain situational awareness about a plat-
form. Domain-dependent knowledge consists of rules for how 
translate a particular user command to a particular platform-
level command, or how to interpret particular input modes in a 
given domain. 

As illustrated in Figure 1, the main behavior components in 
SID Core are the Dialogue Manager, and Monitor, and the 
Tasker: 

• The Dialogue Manager is responsible for all interac-
tions with the user, including interpreting user intent, 
asking clarification, and providing feedback to the us-
er about the status of the robotic platform 

• The Monitor is responsible for maintaining aware-
ness of the state of the robotic platform, especially as 
it pertains to fulfilling the user’s intent 

• The Tasker is responsible for translating user’s intent 
into commands for the robotic platform. 

These modules work over a common shared memory represen-
tation that maintains the state of the vehicle, the state of the 
conversation, and the current plan assigned to the vehicle. This 
allows all modules in SID Core to have access to the task defi-
nition and progress as task execution proceeds. This shared 
representation also allows SID to engage in a dialogue with the 
user before, during, and after task execution. 

From a functional perspective, SID is a goal-directed sys-
tem composed of multiple behavior modules, each responsible 
for the different capabilities mentioned above. This is some-
what similar to the “agent-based” approaches of some conver-
sational dialogue systems [16, 17]. However, rather than multi-
ple agents providing services as seen in other systems, the Soar 
Cognitive Architecture provides the main unifying framework 
for SID’s behavior modules. Soar provides a set of core 
knowledge representations, reasoning and learning processes 
that can be used for building adaptive knowledge-based sys-

tems without having to build these features from scratch [9].  
Soar can also be used in a multi-agent paradigm; however, here 
we chose to implement the behavior modules within a single 
Soar agent. 

These modules of SID Core are discussed in detail below. 

A. Multi-Modal Dialogue Manager 
Broadly speaking, the key role of the Dialogue Manager 

(DM) in this system is to manage the interaction between the 
robot and the user over time to help facilitate robot tasking and 
feedback to the user. Interactions may play out through a back-
and-forth sequence of commands, requests, clarifications, and 
responses. To illustrate the kinds of multi-modal dialogues that 
can occur with SID, some examples are shown in Table 1.  

For a user to provide a robot with high-level tasking, the 
Dialogue Manager must come to an understanding of the user’s 
intent. Intent understanding incorporates different sources of 
knowledge, including knowledge of the mission, of the domain, 
and of the conversation up to that point. The same input may 
have different meanings in different contexts. This process also 
requires resolving references or ambiguities within a user’s 
input. References might be to objects, locations, or people in 
the environment or to previous utterances in the dialogue, 
which the DM must keep track of to help to resolve. Ambigui-
ties can occur when a user refers to an object in the environ-
ment or a previous topic in the dialogue without enough speci-
fication to narrow down to a single thing the user is talking 
about. If the DM does not have enough information to fully 
understand the input, it may request more information from the 
user.  

By definition, dialogues occur over time, including com-
mands, acknowledgements, answers, and even sub-dialogues to 
resolve problems like ambiguities. Also, in a given mission, 
there may be multiple conversations that occur based on how 
the mission plays out. Every turn that any participant takes in a 

TABLE 1: EXAMPLE MULTI-MODAL DIALOGUES WITH SID 

Multi-Modal Dialogue Dialogue Moves 
User: Move along route blue and 

tell me when you’re done. 
Directive (move); 
Request for information 

SID: Roger, moving along route 
blue; will report completion. 

Acknowledgement;  
commitment to report 

(time passes while robot moves)  
SID: Okay, completed route blue. Inform (fulfills earlier 

commitment) 
User: Drive over to the vehicle. Directive (move) 
SID: Which vehicle? I know of 

two. 
Request for clarification 

(subdialogue) 
User: That one (while pointing) Clarification  

(subdialogue) 
SID: Roger, driving to vehicle 1. Acknowledgement 

User: There are enemies in this 
location (user sketches an 
area). 

Inform 

SID: Roger, rerouting to avoid en-
emies. 

Acknowledgement;  
inform of new plan 

  

 

Figure 1: High Level Architecture of the Smart Interaction Device (SID) 



 
 

conversation is called a dialogue move. The DM keeps track of 
these conversations and the connections between dialogue 
moves, maintaining the temporal aspects of the moves as well 
as the individual threads of conversation. The DM also keeps 
track of unanswered questions or requests, by either the user or 
the system, and works to fulfill these information needs. 

The basic algorithm of the Dialogue Manager is as follows: 

1) Classification: infer the type kind of dialogue move from 
the current input and current dialogue state (based on the 
taxonomy of [18]) 

2) Attachment: identify the input’s dialogue thread (is it part 
of an existing dialogue, or a new one?) 

3) Reference Resolution: resolve any references to prior in-
puts (e.g., pronouns) or external references (e.g., objects in 
the world) 

4) Clarification (as needed): resolve any unresolved problems 
by asking the user for clarification; relate any answer back 
to the original dialogue move 

5) Command construction: based on the dialogue move and 
whole dialogue context, construct a concise description of 
the command for execution (including robot moves or sub-
sequent dialogue moves such as acknowledging the com-
mand) 

This process is slightly more complicated when using mul-
tiple modes of input. In SID, user inputs may come from multi-
ple sources simultaneously, for example, through speech and 
gesture. SID must deliberate about what these two inputs mean 
independently and if they mean anything together. This is pro-
cess is called multi-modal fusion [10]. We derive our approach 
to multi-modal fusion from frame-based unification approaches 
[12]. In SID, input from any single source is represented as a 
semantic frame that has some meaning on its own, but may not 
be sufficient to understand the total input. A semantic frame is 
a typed feature structure that is abstracted from the particular 
input device but still contains the core information of the input. 
Unification rules serve to combine inputs from different 
sources in meaningful ways that are constrained by factors such 
as contents and timing. Our unification algorithm uses Soar’s 
Rete algorithm [19] to efficiently handle the resolution of vari-
ables and constraints. 

Consider a command like “Move over there,” spoken with a 
simultaneous pointing gesture. The semantic frames for these 
individual modes are illustrated in Figure 2. The spoken utter-
ance contains a “move” command, with a timestamp and an 
input source, but not enough information to tell where to move 
(lacks a location). This is illustrated in Figure 2 (top). Similar-
ly, a pointing gesture representation includes parameters such 
as the type of gesture (pointing) of where the user is pointing, 
but without a command associated with it (shown in Figure 2 
(bottom)). SID does not have enough information to do any-
thing with either one of these semantic frames individually, so 
the system considers integrating the two to see if they make 
sense together. 

Multi-modal fusion happens by way of domain-specific 
unification rules similar those described by Johnston, et al [12]. 
An example of an integration rule is given in Figure 3, combin-

ing the semantic frames from Figure 2. The unification rule 
contains a left hand side (LHS) that specifies the components 
required for integration – in this example, a movement com-
mand and a gesture that specifies a direction. Part of the LHS 
of the integration rule includes temporal constraints that ensure 
the gesture occurred within the time bounds given with the 
command. On the right-hand side (RHS), we have the specifi-
cation of the semantics for the unified command. 

Unification in Soar happens naturally as part of Soar’s rule 
matching algorithm. In fact, the style of integration rule shown 
in Figure 3 can be directly implemented as a single rule in 
Soar. Adding new combinations of multiple modes is simply a 
process of adding domain-specific rules to assert those combi-
nations. Because there may be multiple possible interpretations 
of individual and combined modalities, this rule asserts a new 

 

 
Figure 2: Typed semantic frame representations for a “Move to 

Location” Command (top) and a pointing gesture (bottom) 

 

Figure 3: Semantic Frame Integration Rule for Combining a Spoken 
Command with a Deictic Gesture 

type:     pointing gesture
location: <location>
time: <time>

command:

destination:

time-start: <time>
time-end:  <time>

target:  
requires location

type: 
move-to-location

From Speech:

From Gesture:

lhs:

rhs:

command:

gesture:

constraints:  within([1],[2],[4])

directive:

destination:

time-start:    [1]
time-end:     [2]

target: 
requires location

type: 
move-to-location

type:     pointing gesture
location: [3]
time: [4]

possible-
command:

request:

destination:

time-start:    [1]
time-end:     [2]

target:  diectic-location
location: [3]

type: move-to-location



 
 

“possible command” that might be considered along with other 
interpretations. In these cases, SID uses knowledge-based pref-
erences to select between the different interpretations of the 
input. The selected command interpretation is then handed to 
the Dialogue Manager for interpretation within the context of 
the dialogue and the larger situation. 

In addition to the process of understanding user inputs, the 
Dialogue Manager is also responsible for responding to user 
questions, asking clarifying questions, or providing status up-
dates. To generate this feedback, the Dialogue Manager con-
structs an utterance using template-based generation [20] and 
creates a representative dialogue move in the dialogue thread to 
keep track of the system’s participation in the conversation. 
This utterance is then handed to the speech generation system 
to verbalize. 

B. Tasker 

To fulfill the goal of enabling high-level tasking for super-
visory control, SID must be able to translate user inputs into 
commands that the unmanned platform can perform. This is the 
job of the Tasker. This translation happens in two phases. First 
is a translation from the user’s command into a domain-level 
specification, independent of the particular platform that is be-
ing used. For example, we have been working in what we call 
the “tactical maneuver” domain, which captures behaviors such 
as moving to waypoints, following routes, patrolling areas, 
providing acknowledgments, reporting progress, etc. Note that 
these include both movement tasks and dialogue acts such as 
communicating back to the user. The result of this translation 
process is a multi-threaded hierarchical task network (HTN) 
that represents the user’s intent in a set of steps that must be 
performed to accomplish that intent. The multi-threaded HTN 
captures steps that can be performed independently (in different 
threads), as well as any hierarchal and temporal ordering inher-
ent in the task. The HTN terminates in a set of primitive actions 
in the domain (“domain primitives”). This domain-level inter-
mediate form is useful from two perspective of discussion with 
the user. It provides a description of what the robot is doing in 
a language closer to the user, versus the low-level messaging 
that occurs at the platform level. Also, since the domain speci-
fication is independent of the platform, this level of description 
for a task will be the same across multiple platforms.  

The second phase of translation is a refinement of this do-
main-level HTN specification (domain primitives) to the par-
ticulars of the platform (platform primitives). Every platform 
will have its idiosyncrasies, whether in terms of what tasks it 
can perform, the protocols/languages it can communicate in, or 
the particular messages it accepts. Platform-specific rules ex-
pand domain primitives in the HTN into a set of platform prim-
itives. The refinement process is specific to each platform, and 
is informed by an ontology that indicates the capabilities of the 
target platform in terms of tasks and messages. For example, 
for a robot that uses JAUS messaging, a move-to-waypoint do-
main primitive would eventually be translated to a JAUS 
SetGlobalWaypoint message. 

In some cases, the platform cannot perform the desired do-
main primitive. Suppose a vehicle did not know how to follow 
routes, but could move to individual waypoints. In this case, 

the Tasker would refine the follow-route domain primitive to a 
series of move-to-waypoint primitives, essentially implement-
ing the follow-route command within the HTN. In other cases, 
there may not be a possible refinement that the platform can 
execute; for example, acknowledging a command. In these 
cases, these steps in the HTN are assigned to a SID Core – 
namely, the Dialogue Manager (DM) for communication with 
the user and the Monitor for tracking platform progress. 

An example HTN is shown in Figure 4. At the top is the 
command from the user (e.g., “Move to X and then Move to 
Y”). This command is executed as two threads, one for ac-
knowledging the command and the other for the actual move-
ment tasks. In this case, the robot cannot be given a multi-step 
movement command so must be issued two individual move-
to-waypoint commands, and SID must monitor for completion 
of the first before giving the second.  

Once the HTN has been fully refined, the Tasker turns to 
doling out these fine-grained commands to their assignees. 
Robot commands are sent to the robot via a plug-in that han-
dles the low-level particulars of the language/networking pro-
tocols. The Dialogue Manager typically handles communica-
tion tasks. The Monitor, described next, handles tasks that re-
late to maintaining awareness about the robot. 

C. Monitor 

The Monitor’s responsibility is to maintain an updated picture 
of the robot’s status with respect to its tasking and including 
other basic information such as battery life or error states. Part 
of this is performed automatically, independent of any user 
tasking, so that SID itself has an update picture of the plat-
form’s status. In other cases, the HTN generated by the Tasker 
includes tasks specifically assigned to the Monitor to help keep 
track of the vehicle’s progress in fulfilling the user’s command. 
In the example HTN in Figure 4, the “At-X” step is assigned to 
the Monitor to have it watch for when the robot has achieved 
waypoint X. When that occurs, the execution can continue to 
the next movement command. The process of monitoring for 
vehicle status is also platform specific. Some unmanned plat-
forms may generate signals indicating completion of a task, in 
which case the Monitor can simply watch for those signals. In 
other cases, the vehicle makes no such reports, and the Monitor 

 
Figure 4: Example HTN with assigned roles for each node 
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has to infer completion from other indicators; for example, the 
robot being within some range of the target. 

V. ERROR HANDLING 
There are myriad ways in which things can go awry when 

understanding the user or in performance of the task. On the 
input recognition and understanding side alone, a litany of dif-
ferent problems can occur: the speech recognition engine can 
completely fail to recognize the user’s input; the speech recog-
nizer might hear only a part of the user’s input, so return an 
incorrect or incomplete parse; the user can say something out-
side the grammar; the gesture recognition system can fail to 
recognize a gesture or user can forget to gesture altogether; the 
user can accidentally give confusing inputs such as “follow this 
point”; the user can give ambiguous inputs that cannot immedi-
ately be resolved into a precise command for the unmanned 
platform; etc. On the task execution side, there are analogous 
problems that arise with autonomous systems: a path-planner 
may fail to find a path to perform a task; the vehicle may work 
its way into a corner that it cannot get out of; etc. 

While we cannot anticipate every possible problem, we take 
a staged approach to dealing with some of these errors in input 
processing and execution. SID tries to use as much as it can 
from the user input to understand what the user meant, includ-
ing the context from the conversation up to that point. Where it 
does not have enough information to construct a robot task, it 
will ask for clarification, using what it does know to compose a 
meaningful question back to the user. For example, if the user 
says “Go to this point” without indicating a destination, SID 
knows the command (go-to-point) but not the target, so can ask 
for clarification with “Which point do you want me to go to?” 
Another stage in error handling occurs when resolving user 
inputs to SID’s knowledge of the environment. For example, if 
the user refers to a location that the system does not know 
about, it can reply with, “I don’t know about that location. 
Where do you want me to go?” Or if the user’s input is ambig-
uous and can resolve to multiple targets, SID essentially asks, 
“I know of several like that. Which one do you want me to go 
to?” Finally, if SID cannot make any sense of the user’s input –
for example, from the recognizer not returning a parse to pars-
ing only incomplete input, SID falls back to a generic “say 
again?” message. In this case, the user must simply re-state the 
input. 

These are fairly simple strategies so far, and the system 
tends to fall to the “say again” more than we would like. We 
plan to make SID more helpful in the requests back to the user, 
and in the types of clarifications the user can provide. We are 
experimenting with different speech recognizers and language 
processors to give SID the best possible chance of making 
sense of the user’s input. There can also be cases where the 
back-and-forth with the user seems to be not making any pro-
gress; ideally, SID would be able to recognize this and switch 
to a more guided user interaction strategy to help the dialogue 
along. 

The platform itself can also have problems executing the 
given task, for example, being unable to plan to the given des-
tination, or getting stuck where it cannot find its way out of a 
corner. In the former case if the platform can notify SID that it 
cannot generate a plan, the SID can convey this to the user. In 

other cases, the vehicle may simply keep trying to find a path 
by exploring different routes, without ever recognizing that it 
cannot actually reach the destination. So far, SID does not rec-
ognize these situations, and relies on the user to recognize and 
step in with new instructions. In the worst case, SID provides 
tele-op control (either verbally – “turn around”, “back up” – or 
with a virtual joystick on a hand-held device) to allow the user 
to take over the robot for a brief period to get the robot where it 
might be able to recover. 

While these methods of a generic “say again” or tele-op are 
unappealing from a natural user interface perspective, they are 
necessary fallbacks in these kinds of systems where input rec-
ognizers or autonomy algorithms do not perform 100% of the 
time. Generally, our approach is on the one hand to use dia-
logue as the basis for communicating with the user to make the 
interaction successful, and other the other hand, allow the user 
to step in to make these low-level changes by exception. 

VI. APPLICATION DOMAINS 
We have used SID in a few application domains, spanning 

simulated unmanned air vehicles (UAVs), real UAVs, and real 
ground vehicles. Physically, SID may take the form of an actu-
al physical device (e.g., a portable tablet computer or a 
smartphone), or may be “device-less” in the sense that the user 
is not holding anything but relying on sensors on the unmanned 
platform. In this section, we describe two different use cases: 
unmanned ground vehicles and unmanned helicopters. 

A. Unmanned Ground Vehicles 
The tasks of interest in this use case are mobility tasks such 

as delivering supplies to remote users or patrolling an area. We 
have connected SID to two different ground robot: a P3-AT 
Pioneer and a robot custom-built by the University of Michi-
gan’s APRIL laboratory for the international MAGIC competi-
tion [21]. Both use different communication protocols but are 
capable of performing similar domain primitives, such as mov-
ing to points and following routes. For these use cases, we have 
used speech and gesture in face-to-face communication and 
speech and sketch for remote communication. The role of ges-
ture in these cases has been solely for pointing (deictic ges-
tures), in support of spoken utterances (for example, “go over 
there” with a pointing gesture). The robots maintain internal 
maps that can be labeled by the user, and which provide refer-
ence locations for speech and gesture. With SID as a facilitator, 
the robot has knowledge of its mission, can answer questions 
about its mission as it progresses, and can even interact with 
multiple users during its mission. 

An example is shown in Figure 5 (top), using a smartphone 
with accelerometer and compass used both as a pointing device 
and as a simulated radio. We have also used a Microsoft Kinect 
to capture similar pointing gestures. In the first use case, there 
is no display for the user; all feedback from the robot is via 
generated speech and through the robot’s own mobility. Alter-
natively, Figure 5 (bottom) shows a tablet computer as the SID 
user interface that includes a video feed and a map view as it is 
generated by the robot, both of which can be sketched on to 
communicate with the ground vehicles. Examples user inputs 
on the tablet display include “Follow this route” while sketch-



 
 

ing a route to follow on the map, or “Go over to this point” 
while indicating a destination on the video display. 

B. Real and Simulated Unmanned Helicopters 
We have also connected SID to both simulated and real ro-

tary-wing unmanned air vehicles. With these, the focus is on 
remote communication using speech and sketch on a tablet 
computer. The task in this use case is autonomous landing at a 
selected landing site. Here we assume greater autonomy on the 
part of the aircraft – the user is not directing the aircraft so 
much as helping guide UAV on its last leg inbound to land 
safely. Along the way, the user may provide a marker indicat-
ing the landing site, or may provide information about the area 
surrounding the landing site such as the location of obstacles or 
other threats. With this information, the UAV can plan around 
these obstacles and, finally, choose to land. 

In the simulated UAV case, we are using an open source 
simulation environment called SimJr we developed for proto-
typing autonomous behaviors [22]. Figure 6 illustrates a user 
interacting via a tablet computer with a simulated UAV run-
ning in SimJr. In the top pane, the user says, “There are ene-
mies in this location” while sketching on the screen. SID fuses 
the two input streams together and, based on knowledge of the 
domain, assumes that enemy areas are to be avoided, so inter-
prets the user input as defining a no-fly area and passes that no-
fly area to the UAV planner. In the lower pane, SID indicates 
the constructed no-fly area on the map and provides feedback 
to the user about the newly constructed route around the desig-
nated no-fly area. 

In the case of a real UAV, we have connected to a Parrot 
ARDrone [23], to which we have added video processing to 
find particular landing site markers. Here, the interaction is 
remote via speech and via a marker on the ground indicating 
the position of the landing site. The dialogue begins when the 
aircraft is near the landing zone, and the user can tell the air-
craft to look for a particular type of marker. When the marker 
is found, SID notifies the user and the user can then direct the 
aircraft to land. Figure 7 illustrates the UAV in action. The left 
panel shows the view from the aircraft’s forward-looking cam-

era, with processed video marking the found landing site. The 
right panel shows the aircraft about to land on the marker.  

VII. CONCLUSIONS AND FUTURE WORK 
We have described a multi-modal intelligent user interface 

called the Smart Interaction Device (SID) that allows a user to 
interact with unmanned platforms in more natural ways. SID 

 

 

 
Figure 5: (top) A user gesturing while speaking to a ground robot: “Go 

over there”; (bottom) a tablet display with video feed and top-down 
map views 

 

 
Figure 6: Example of SID instantiated with a tablet computer, interacting 

with a simulated helicopter. 

  
Figure 7: SID directing a Parrot ARDrone UAV to a landing site 



 
 

serves as a facilitator between the user and the unmanned plat-
form, interpreting the user’s high-level commands and convert-
ing them into low-level commands for the platform, and pro-
vided user-level feedback based on low-level status infor-
mation from the vehicle. SID fuses a variety of input modalities 
(sketch, speech, gesture) to infer user’s intent. SID also engag-
es in a dialogue with the user to ensure that it understands the 
user; for example, asking for clarification when the user’s input 
is ambiguous. By acting as a smart facilitator, SID moves un-
manned platforms in the direction of supervisory control, mak-
ing them easier to use and freeing up users to perform other 
tasks. SID is related to systems like WITAS [17] and QuickSet 
[11], but explores how a cognitive architecture (Soar [9]) can 
be used as the basis for an intelligent user interface, and broad-
ens the modalities of interaction from those earlier systems to 
include speech, sketch, and gesture for interaction with differ-
ent types of unmanned platforms. 

We have not yet completed a formal evaluation of SID to 
gauge quantitatively its performance in terms of the goals sug-
gested earlier: natural interaction, increased user situational 
awareness, and supervisory control. However, a number of the 
features we have demonstrated are necessary precursors to 
achieving these goals, including using multi-modal dialogue 
without requiring the user to be heads-down in the display. 
While we do not have firm results yet, some pilot studies indi-
cate that dialogue with SID helps to reduce the amount of work 
the operator must do and the amount of stress that the operator 
feels in performing a task. We have had informal evaluations 
with representative users to get feedback on the system, and 
have been able to roll in some suggested improvements. Our 
next steps in this work are to perform a full usability evaluation 
and further iterate on the dialogue strategies and interaction 
modalities to make a more robust, user-friendly system.  
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