

A Multi-Modal Intelligent User Interface for
Supervisory Control of Unmanned Platforms

Glenn Taylor, Richard Frederiksen, Jacob Crossman, Michael Quist, Patrick Theisen
Soar Technology, Inc.
Ann Arbor, MI, USA

{glenn, rdf, jcrossman, quist, patrick.theisen}@soartech.com

Abstract— Typical human-robot interaction (HRI) is through
tele-operation or point-and-click interfaces that require extensive
training to become proficient and require the user’s complete
attention to operate. For unmanned platforms to reach their full
potential, users must be able to exert supervisory control over
those platforms. This requires more effective means of communi-
cation in both directions, including high-level commands given to
the vehicle and meaningful feedback to the user. Our aim is to
reduce the training requirements and workload needed to inter-
act with unmanned systems effectively and to raise the level of
user interaction with these systems so that supervisory control is
possible. In this paper we describe an intelligent user interface,
called the Smart Interaction Device (SID) that facilitates a dia-
logue between the user and the unmanned platform. SID works
with the user to understand the user’s intent, including asking
any clarification questions. Once an understanding is established,
SID translates that intent into the language of the platform. SID
also monitors the platform’s progress in order to give feedback to
the user about status or problems that arise. We have incorpo-
rated multiple input modalities, including speech, gesture, and
sketch as natural ways for a user to communicate with unmanned
platforms. SID also provides multiple modes of feedback, includ-
ing graphics, video and speech. We describe SID’s architecture
and some examples of its application in different domains.

Keywords: HRI Multi-modal Interfaces, HRI Applications,
Supervisory Control, Interaction Components

I. INTRODUCTION
Unmanned platforms that have been deployed in the field

for military use tend to be remotely controlled through an Op-
erator Control Unit (OCU). OCUs typically allow for low-level
tele-operation (e.g., joystick control) or point-and-click-style
interfaces (e.g., menus, buttons) that require fine-grained task-
ing. These systems currently require extensive training. US
military specialties in unmanned platforms require roughly 7
months of training in classroom and practical application
courses. Even with all this training, human error is still cited as
the dominant cause of 80% of all UAV crashes [1]. On top of
this, typical OCUs require the full attention of the user to task
the robot and monitor its progress [2]. This takes away from the
users’ ability to maintain their own situational awareness or
perform other tasks.

A current trend in human-robot interaction research is to-
ward supervisory control, where the user’s job changes to one
of managing the robot rather than controlling it inch by inch.

Sheridan [3] outlines three requirements for supervisory con-
trol: autonomy, high-level commands, and situational aware-
ness. This occurs routinely in human teams that include a lead-
er and a subordinate: the leader gives a high-level task, and the
subordinate is given some autonomy to perform the task while
at the same time keeping the leader informed of progress or
problems. For supervisory control in human-robot teams, the
same conditions must hold: the robot must have autonomy to
perform at least some tasks, must accept high-level tasking (far
above tele-operation), and must provide feedback to the user to
help maintain the user’s awareness. Autonomy in unmanned
platforms has been slowly increasing over time, but OCUs
have tended to lag behind in terms of providing high-level task-
ing, providing effective situational awareness to the user, and
in usability generally.

Over the last few years, we have been developing the Smart
Interaction Device (SID) whose purpose is to enable a user to
work at the level of supervisory control using natural ways of
interacting with the robot. Our approach with SID follows
Sheridan’s three requirements. SID takes the form of an intelli-
gent user interface that facilitates a high-level, multi-modal
interaction between a user and a robot. SID leverages the au-
tonomy on the platform, but also adds some intelligence in the
user interface itself that helps to translate high-level user com-
mands into robot commands. SID also helps maintain user situ-
ational awareness by providing feedback to the user, either by
request or based on expected protocols. The result is that the
user can spend less time minding the unmanned vehicle and
more time paying attention to his or her surroundings, working
on other tasks, or managing multiple vehicles.

In the rest of this paper, we frame our approach in the con-
text of other work in the field, describe the system in detail, and
describe some applications of the system in a range of real and
simulated unmanned platforms.

II. PRIOR WORK
As mentioned, most OCU systems today are tele-operation

or point-and-click interfaces. Some of the more advanced HRI
systems in military robot research have experimented with
speech interfaces, but typically these are characterized by one-
shot interactions: the user issues a command and the system
performs the task, perhaps with minimal acknowledgment [4].
This interaction is still fairly close to the primitives of the plat-
form, and does not include the kinds of dialogue that one

This work was partially funded by the Office of Naval Research.

Presented at Collaboration Technologies and Systems
Collaborative Robots and Human Robot Interaction Workshop 2012

would see in similar human communication. In contrast, our
goal is to approach the language that people use when com-
municating to each other in these situations.

Academic research has gone much further in terms of inter-
active robotic systems. There has been extensive work on dia-
logue systems for robots, including work in direction-giving [5]
and spatial language [6]. Most similar to SID in terms of archi-
tecture is the WITAS dialogue system [7]. WITAS focused on
UAV operations, specifically multi-threaded conversations and
coordination of joint activities such as target tracking. SID
shares much in common with the WITAS architecture, includ-
ing similar core components for dialogue management and task
representation. However, rather than the multi-agent paradigm
used by WITAS, we take a knowledge-based system approach,
using the Soar cognitive architecture [8, 9] as the basis for SID.
Also, whereas WITAS supported speech with mouse clicks to
indicate positions for a UAV to fly, SID supports other modali-
ties natural to these domains such as sketching and gesture
simultaneous with speech.

The work of Oviatt and her colleagues is well-known
among multi-modal interfaces, exemplified in systems such as
QuickSet [10, 11] that combines speech and pen-based input.
In SID, we borrow from the underlying multi-modal fusion
algorithms in this work, as described by Johnson et al [12]. We
implement these algorithms within the Soar architecture as a
way to perform very fast unification and to leverage multiple
sources of knowledge both for the fusion of input sources and
for the resolution of multiple interpretations.

There has been a recent boom in “natural interfaces” made
possible by inexpensive sensor systems like the Microsoft Ki-
nect. This has spawned numerous research and demonstration
systems that show simple gestures like “raised/lowered arm” to
trigger a UAV to take off or land (for example, [13]). Rather
than inventing new protocols, our approach has been much
more user-focused in that we have worked to discover how our
expected users interact in today’s operations and use that as a
starting point for understanding how users would like to inter-
act with unmanned platforms.

III. BACKGROUND: NATURAL INTERACTION

Our goal in building HRI systems is to provide natural
ways for users to interact with unmanned platforms. What con-
stitutes natural interaction? We look to human interaction to
help answer this question, and the answer varies depending on
the domain and on the situation. For face-to-face contact, peo-
ple naturally use speech and gesture to communicate. For non-
face-to-face communication, gesture becomes less useful and
speech or text/chat more prevalent. People often use shared
artifacts like maps to refer to or even drawn on, especially in
spatially oriented domains. Furthermore, mixing modes togeth-
er has been shown to be natural and often more efficient in
spatially oriented domains [14]. In addition to leveraging the
work of others, we have conducted our own interviews and
observations of our expected users performing the kinds of
tasks that the military hopes will soon include unmanned plat-
forms, in naturalistic settings and in Wizard of Oz studies. We
expect that if robots can interact in ways similar to how people

interact in these settings, those robots will be easier to use and
require less training for users.

Another aspect of naturalness comes from dialogue itself.
Human communication happens over time, by way of multiple
communicative acts. Dialogue is a way to mitigate the frailties
of human communication so that a task gets done. Dialogue is
so important in human communication that it is embedded in
military communications as a matter of doctrine: a speaker
issues a command, and the hearer repeats it back to make sure
everything was understood properly. This process helps in-
crease the robustness of communication and understanding
between participants, and is an essential element to carry over
to human-machine interfaces.

Because people use dialogues regularly, they expect certain
forms of interaction, whether it is in the back and forth proto-
cols of command-and-acknowledge, in the use of clarification
questions, or in the brevity afforded by using referring expres-
sions (e.g., pronouns) to minimize the amount of language
needed. Especially in supervisory control in human teams (e.g.,
lead/subordinate roles), there are expectations of acknowledg-
ments and feedback as tasks progress. When these expectations
are broken, situation awareness and task completion suffers.
Dialogue has a secondary effect of decreasing the workload of
participants. By allowing references to earlier parts of the con-
versations, there is less work for the speaker. Hearers also ex-
pect this kind of brevity, and have to work harder when it is not
present in the dialogue [14]. To be considered natural, HRI
systems must meet these human expectations about conversa-
tions.

The next sections describe our technical approach to mak-
ing natural interfaces for supervisory control, in the form of our
Smart Interaction Device (SID), and the applications of SID to
various robotic platforms.

IV. APPROACH: INTELLIGENCE IN THE INTERFACE

Our general approach to building natural interaction sys-
tems for unmanned platforms has been to make the user inter-
face smarter, in the tradition of intelligent user interfaces [15].
The user interface is “smart” in the sense that it lets a user spec-
ify higher-level input and it works to understand that input in
user terms, then translates that input into robot terms. The sys-
tem also interprets user inputs across multiple input modalities,
and combines them to a single unified meaning. The goal is to
let the user think and communicate at the level of supervisory
control tasks without worrying about the details of how a par-
ticular unmanned platform has to be told to perform that task.

To accommodate the kinds of high-level interactions that
occur in these domains, an intelligent user interface must have
some core capabilities for managing dialogue with a user,
translating the user commands into robot-level tasks, and moni-
toring the progress of the robot to ensure that it is proceeding
correctly and to provide feedback to the user. As shown in Fig-
ure 1, SID consists of a domain-independent set of core mod-
ules (“SID Core”) that are designed to fulfill these require-
ments. SID additionally includes input-device-specific, do-
main-specific and platform-specific layers, each of which may
be customized to a particular application. Different ways of

interacting with the robot and different robot capabilities neces-
sitate different user-facing and robot-facing software interfaces.

Domain-independent knowledge in SID consists of rules for
how to manage dialogues, how to break a task down into finer
tasks, and how to maintain situational awareness about a plat-
form. Domain-dependent knowledge consists of rules for how
translate a particular user command to a particular platform-
level command, or how to interpret particular input modes in a
given domain.

As illustrated in Figure 1, the main behavior components in
SID Core are the Dialogue Manager, and Monitor, and the
Tasker:

• The Dialogue Manager is responsible for all interac-
tions with the user, including interpreting user intent,
asking clarification, and providing feedback to the us-
er about the status of the robotic platform

• The Monitor is responsible for maintaining aware-
ness of the state of the robotic platform, especially as
it pertains to fulfilling the user’s intent

• The Tasker is responsible for translating user’s intent
into commands for the robotic platform.

These modules work over a common shared memory represen-
tation that maintains the state of the vehicle, the state of the
conversation, and the current plan assigned to the vehicle. This
allows all modules in SID Core to have access to the task defi-
nition and progress as task execution proceeds. This shared
representation also allows SID to engage in a dialogue with the
user before, during, and after task execution.

From a functional perspective, SID is a goal-directed sys-
tem composed of multiple behavior modules, each responsible
for the different capabilities mentioned above. This is some-
what similar to the “agent-based” approaches of some conver-
sational dialogue systems [16, 17]. However, rather than multi-
ple agents providing services as seen in other systems, the Soar
Cognitive Architecture provides the main unifying framework
for SID’s behavior modules. Soar provides a set of core
knowledge representations, reasoning and learning processes
that can be used for building adaptive knowledge-based sys-

tems without having to build these features from scratch [9].
Soar can also be used in a multi-agent paradigm; however, here
we chose to implement the behavior modules within a single
Soar agent.

These modules of SID Core are discussed in detail below.

A. Multi-Modal Dialogue Manager
Broadly speaking, the key role of the Dialogue Manager

(DM) in this system is to manage the interaction between the
robot and the user over time to help facilitate robot tasking and
feedback to the user. Interactions may play out through a back-
and-forth sequence of commands, requests, clarifications, and
responses. To illustrate the kinds of multi-modal dialogues that
can occur with SID, some examples are shown in Table 1.

For a user to provide a robot with high-level tasking, the
Dialogue Manager must come to an understanding of the user’s
intent. Intent understanding incorporates different sources of
knowledge, including knowledge of the mission, of the domain,
and of the conversation up to that point. The same input may
have different meanings in different contexts. This process also
requires resolving references or ambiguities within a user’s
input. References might be to objects, locations, or people in
the environment or to previous utterances in the dialogue,
which the DM must keep track of to help to resolve. Ambigui-
ties can occur when a user refers to an object in the environ-
ment or a previous topic in the dialogue without enough speci-
fication to narrow down to a single thing the user is talking
about. If the DM does not have enough information to fully
understand the input, it may request more information from the
user.

By definition, dialogues occur over time, including com-
mands, acknowledgements, answers, and even sub-dialogues to
resolve problems like ambiguities. Also, in a given mission,
there may be multiple conversations that occur based on how
the mission plays out. Every turn that any participant takes in a

TABLE 1: EXAMPLE MULTI-MODAL DIALOGUES WITH SID

Multi-Modal Dialogue Dialogue Moves
User: Move along route blue and

tell me when you’re done.
Directive (move);
Request for information

SID: Roger, moving along route
blue; will report completion.

Acknowledgement;
commitment to report

(time passes while robot moves)
SID: Okay, completed route blue. Inform (fulfills earlier

commitment)
User: Drive over to the vehicle. Directive (move)
SID: Which vehicle? I know of

two.
Request for clarification

(subdialogue)
User: That one (while pointing) Clarification

(subdialogue)
SID: Roger, driving to vehicle 1. Acknowledgement

User: There are enemies in this
location (user sketches an
area).

Inform

SID: Roger, rerouting to avoid en-
emies.

Acknowledgement;
inform of new plan

Figure 1: High Level Architecture of the Smart Interaction Device (SID)

conversation is called a dialogue move. The DM keeps track of
these conversations and the connections between dialogue
moves, maintaining the temporal aspects of the moves as well
as the individual threads of conversation. The DM also keeps
track of unanswered questions or requests, by either the user or
the system, and works to fulfill these information needs.

The basic algorithm of the Dialogue Manager is as follows:

1) Classification: infer the type kind of dialogue move from
the current input and current dialogue state (based on the
taxonomy of [18])

2) Attachment: identify the input’s dialogue thread (is it part
of an existing dialogue, or a new one?)

3) Reference Resolution: resolve any references to prior in-
puts (e.g., pronouns) or external references (e.g., objects in
the world)

4) Clarification (as needed): resolve any unresolved problems
by asking the user for clarification; relate any answer back
to the original dialogue move

5) Command construction: based on the dialogue move and
whole dialogue context, construct a concise description of
the command for execution (including robot moves or sub-
sequent dialogue moves such as acknowledging the com-
mand)

This process is slightly more complicated when using mul-
tiple modes of input. In SID, user inputs may come from multi-
ple sources simultaneously, for example, through speech and
gesture. SID must deliberate about what these two inputs mean
independently and if they mean anything together. This is pro-
cess is called multi-modal fusion [10]. We derive our approach
to multi-modal fusion from frame-based unification approaches
[12]. In SID, input from any single source is represented as a
semantic frame that has some meaning on its own, but may not
be sufficient to understand the total input. A semantic frame is
a typed feature structure that is abstracted from the particular
input device but still contains the core information of the input.
Unification rules serve to combine inputs from different
sources in meaningful ways that are constrained by factors such
as contents and timing. Our unification algorithm uses Soar’s
Rete algorithm [19] to efficiently handle the resolution of vari-
ables and constraints.

Consider a command like “Move over there,” spoken with a
simultaneous pointing gesture. The semantic frames for these
individual modes are illustrated in Figure 2. The spoken utter-
ance contains a “move” command, with a timestamp and an
input source, but not enough information to tell where to move
(lacks a location). This is illustrated in Figure 2 (top). Similar-
ly, a pointing gesture representation includes parameters such
as the type of gesture (pointing) of where the user is pointing,
but without a command associated with it (shown in Figure 2
(bottom)). SID does not have enough information to do any-
thing with either one of these semantic frames individually, so
the system considers integrating the two to see if they make
sense together.

Multi-modal fusion happens by way of domain-specific
unification rules similar those described by Johnston, et al [12].
An example of an integration rule is given in Figure 3, combin-

ing the semantic frames from Figure 2. The unification rule
contains a left hand side (LHS) that specifies the components
required for integration – in this example, a movement com-
mand and a gesture that specifies a direction. Part of the LHS
of the integration rule includes temporal constraints that ensure
the gesture occurred within the time bounds given with the
command. On the right-hand side (RHS), we have the specifi-
cation of the semantics for the unified command.

Unification in Soar happens naturally as part of Soar’s rule
matching algorithm. In fact, the style of integration rule shown
in Figure 3 can be directly implemented as a single rule in
Soar. Adding new combinations of multiple modes is simply a
process of adding domain-specific rules to assert those combi-
nations. Because there may be multiple possible interpretations
of individual and combined modalities, this rule asserts a new

Figure 2: Typed semantic frame representations for a “Move to

Location” Command (top) and a pointing gesture (bottom)

Figure 3: Semantic Frame Integration Rule for Combining a Spoken
Command with a Deictic Gesture

type: pointing gesture
location: <location>
time: <time>

command:

destination:

time-start: <time>
time-end: <time>

target:
requires location

type:
move-to-location

From Speech:

From Gesture:

lhs:

rhs:

command:

gesture:

constraints: within([1],[2],[4])

directive:

destination:

time-start: [1]
time-end: [2]

target:
requires location

type:
move-to-location

type: pointing gesture
location: [3]
time: [4]

possible-
command:

request:

destination:

time-start: [1]
time-end: [2]

target: diectic-location
location: [3]

type: move-to-location

“possible command” that might be considered along with other
interpretations. In these cases, SID uses knowledge-based pref-
erences to select between the different interpretations of the
input. The selected command interpretation is then handed to
the Dialogue Manager for interpretation within the context of
the dialogue and the larger situation.

In addition to the process of understanding user inputs, the
Dialogue Manager is also responsible for responding to user
questions, asking clarifying questions, or providing status up-
dates. To generate this feedback, the Dialogue Manager con-
structs an utterance using template-based generation [20] and
creates a representative dialogue move in the dialogue thread to
keep track of the system’s participation in the conversation.
This utterance is then handed to the speech generation system
to verbalize.

B. Tasker

To fulfill the goal of enabling high-level tasking for super-
visory control, SID must be able to translate user inputs into
commands that the unmanned platform can perform. This is the
job of the Tasker. This translation happens in two phases. First
is a translation from the user’s command into a domain-level
specification, independent of the particular platform that is be-
ing used. For example, we have been working in what we call
the “tactical maneuver” domain, which captures behaviors such
as moving to waypoints, following routes, patrolling areas,
providing acknowledgments, reporting progress, etc. Note that
these include both movement tasks and dialogue acts such as
communicating back to the user. The result of this translation
process is a multi-threaded hierarchical task network (HTN)
that represents the user’s intent in a set of steps that must be
performed to accomplish that intent. The multi-threaded HTN
captures steps that can be performed independently (in different
threads), as well as any hierarchal and temporal ordering inher-
ent in the task. The HTN terminates in a set of primitive actions
in the domain (“domain primitives”). This domain-level inter-
mediate form is useful from two perspective of discussion with
the user. It provides a description of what the robot is doing in
a language closer to the user, versus the low-level messaging
that occurs at the platform level. Also, since the domain speci-
fication is independent of the platform, this level of description
for a task will be the same across multiple platforms.

The second phase of translation is a refinement of this do-
main-level HTN specification (domain primitives) to the par-
ticulars of the platform (platform primitives). Every platform
will have its idiosyncrasies, whether in terms of what tasks it
can perform, the protocols/languages it can communicate in, or
the particular messages it accepts. Platform-specific rules ex-
pand domain primitives in the HTN into a set of platform prim-
itives. The refinement process is specific to each platform, and
is informed by an ontology that indicates the capabilities of the
target platform in terms of tasks and messages. For example,
for a robot that uses JAUS messaging, a move-to-waypoint do-
main primitive would eventually be translated to a JAUS
SetGlobalWaypoint message.

In some cases, the platform cannot perform the desired do-
main primitive. Suppose a vehicle did not know how to follow
routes, but could move to individual waypoints. In this case,

the Tasker would refine the follow-route domain primitive to a
series of move-to-waypoint primitives, essentially implement-
ing the follow-route command within the HTN. In other cases,
there may not be a possible refinement that the platform can
execute; for example, acknowledging a command. In these
cases, these steps in the HTN are assigned to a SID Core –
namely, the Dialogue Manager (DM) for communication with
the user and the Monitor for tracking platform progress.

An example HTN is shown in Figure 4. At the top is the
command from the user (e.g., “Move to X and then Move to
Y”). This command is executed as two threads, one for ac-
knowledging the command and the other for the actual move-
ment tasks. In this case, the robot cannot be given a multi-step
movement command so must be issued two individual move-
to-waypoint commands, and SID must monitor for completion
of the first before giving the second.

Once the HTN has been fully refined, the Tasker turns to
doling out these fine-grained commands to their assignees.
Robot commands are sent to the robot via a plug-in that han-
dles the low-level particulars of the language/networking pro-
tocols. The Dialogue Manager typically handles communica-
tion tasks. The Monitor, described next, handles tasks that re-
late to maintaining awareness about the robot.

C. Monitor

The Monitor’s responsibility is to maintain an updated picture
of the robot’s status with respect to its tasking and including
other basic information such as battery life or error states. Part
of this is performed automatically, independent of any user
tasking, so that SID itself has an update picture of the plat-
form’s status. In other cases, the HTN generated by the Tasker
includes tasks specifically assigned to the Monitor to help keep
track of the vehicle’s progress in fulfilling the user’s command.
In the example HTN in Figure 4, the “At-X” step is assigned to
the Monitor to have it watch for when the robot has achieved
waypoint X. When that occurs, the execution can continue to
the next movement command. The process of monitoring for
vehicle status is also platform specific. Some unmanned plat-
forms may generate signals indicating completion of a task, in
which case the Monitor can simply watch for those signals. In
other cases, the vehicle makes no such reports, and the Monitor

Figure 4: Example HTN with assigned roles for each node

Acknowledge
(Dialogue Mgr)

Move-to-X and
Move-to-Y

Thread1 Thread2

Move-to-X
(Robot)

Move-to-Y
(Robot)

"Move to X and
then Move to Y"

At-X
(Monitor)

User Command

has to infer completion from other indicators; for example, the
robot being within some range of the target.

V. ERROR HANDLING
There are myriad ways in which things can go awry when

understanding the user or in performance of the task. On the
input recognition and understanding side alone, a litany of dif-
ferent problems can occur: the speech recognition engine can
completely fail to recognize the user’s input; the speech recog-
nizer might hear only a part of the user’s input, so return an
incorrect or incomplete parse; the user can say something out-
side the grammar; the gesture recognition system can fail to
recognize a gesture or user can forget to gesture altogether; the
user can accidentally give confusing inputs such as “follow this
point”; the user can give ambiguous inputs that cannot immedi-
ately be resolved into a precise command for the unmanned
platform; etc. On the task execution side, there are analogous
problems that arise with autonomous systems: a path-planner
may fail to find a path to perform a task; the vehicle may work
its way into a corner that it cannot get out of; etc.

While we cannot anticipate every possible problem, we take
a staged approach to dealing with some of these errors in input
processing and execution. SID tries to use as much as it can
from the user input to understand what the user meant, includ-
ing the context from the conversation up to that point. Where it
does not have enough information to construct a robot task, it
will ask for clarification, using what it does know to compose a
meaningful question back to the user. For example, if the user
says “Go to this point” without indicating a destination, SID
knows the command (go-to-point) but not the target, so can ask
for clarification with “Which point do you want me to go to?”
Another stage in error handling occurs when resolving user
inputs to SID’s knowledge of the environment. For example, if
the user refers to a location that the system does not know
about, it can reply with, “I don’t know about that location.
Where do you want me to go?” Or if the user’s input is ambig-
uous and can resolve to multiple targets, SID essentially asks,
“I know of several like that. Which one do you want me to go
to?” Finally, if SID cannot make any sense of the user’s input –
for example, from the recognizer not returning a parse to pars-
ing only incomplete input, SID falls back to a generic “say
again?” message. In this case, the user must simply re-state the
input.

These are fairly simple strategies so far, and the system
tends to fall to the “say again” more than we would like. We
plan to make SID more helpful in the requests back to the user,
and in the types of clarifications the user can provide. We are
experimenting with different speech recognizers and language
processors to give SID the best possible chance of making
sense of the user’s input. There can also be cases where the
back-and-forth with the user seems to be not making any pro-
gress; ideally, SID would be able to recognize this and switch
to a more guided user interaction strategy to help the dialogue
along.

The platform itself can also have problems executing the
given task, for example, being unable to plan to the given des-
tination, or getting stuck where it cannot find its way out of a
corner. In the former case if the platform can notify SID that it
cannot generate a plan, the SID can convey this to the user. In

other cases, the vehicle may simply keep trying to find a path
by exploring different routes, without ever recognizing that it
cannot actually reach the destination. So far, SID does not rec-
ognize these situations, and relies on the user to recognize and
step in with new instructions. In the worst case, SID provides
tele-op control (either verbally – “turn around”, “back up” – or
with a virtual joystick on a hand-held device) to allow the user
to take over the robot for a brief period to get the robot where it
might be able to recover.

While these methods of a generic “say again” or tele-op are
unappealing from a natural user interface perspective, they are
necessary fallbacks in these kinds of systems where input rec-
ognizers or autonomy algorithms do not perform 100% of the
time. Generally, our approach is on the one hand to use dia-
logue as the basis for communicating with the user to make the
interaction successful, and other the other hand, allow the user
to step in to make these low-level changes by exception.

VI. APPLICATION DOMAINS
We have used SID in a few application domains, spanning

simulated unmanned air vehicles (UAVs), real UAVs, and real
ground vehicles. Physically, SID may take the form of an actu-
al physical device (e.g., a portable tablet computer or a
smartphone), or may be “device-less” in the sense that the user
is not holding anything but relying on sensors on the unmanned
platform. In this section, we describe two different use cases:
unmanned ground vehicles and unmanned helicopters.

A. Unmanned Ground Vehicles
The tasks of interest in this use case are mobility tasks such

as delivering supplies to remote users or patrolling an area. We
have connected SID to two different ground robot: a P3-AT
Pioneer and a robot custom-built by the University of Michi-
gan’s APRIL laboratory for the international MAGIC competi-
tion [21]. Both use different communication protocols but are
capable of performing similar domain primitives, such as mov-
ing to points and following routes. For these use cases, we have
used speech and gesture in face-to-face communication and
speech and sketch for remote communication. The role of ges-
ture in these cases has been solely for pointing (deictic ges-
tures), in support of spoken utterances (for example, “go over
there” with a pointing gesture). The robots maintain internal
maps that can be labeled by the user, and which provide refer-
ence locations for speech and gesture. With SID as a facilitator,
the robot has knowledge of its mission, can answer questions
about its mission as it progresses, and can even interact with
multiple users during its mission.

An example is shown in Figure 5 (top), using a smartphone
with accelerometer and compass used both as a pointing device
and as a simulated radio. We have also used a Microsoft Kinect
to capture similar pointing gestures. In the first use case, there
is no display for the user; all feedback from the robot is via
generated speech and through the robot’s own mobility. Alter-
natively, Figure 5 (bottom) shows a tablet computer as the SID
user interface that includes a video feed and a map view as it is
generated by the robot, both of which can be sketched on to
communicate with the ground vehicles. Examples user inputs
on the tablet display include “Follow this route” while sketch-

ing a route to follow on the map, or “Go over to this point”
while indicating a destination on the video display.

B. Real and Simulated Unmanned Helicopters
We have also connected SID to both simulated and real ro-

tary-wing unmanned air vehicles. With these, the focus is on
remote communication using speech and sketch on a tablet
computer. The task in this use case is autonomous landing at a
selected landing site. Here we assume greater autonomy on the
part of the aircraft – the user is not directing the aircraft so
much as helping guide UAV on its last leg inbound to land
safely. Along the way, the user may provide a marker indicat-
ing the landing site, or may provide information about the area
surrounding the landing site such as the location of obstacles or
other threats. With this information, the UAV can plan around
these obstacles and, finally, choose to land.

In the simulated UAV case, we are using an open source
simulation environment called SimJr we developed for proto-
typing autonomous behaviors [22]. Figure 6 illustrates a user
interacting via a tablet computer with a simulated UAV run-
ning in SimJr. In the top pane, the user says, “There are ene-
mies in this location” while sketching on the screen. SID fuses
the two input streams together and, based on knowledge of the
domain, assumes that enemy areas are to be avoided, so inter-
prets the user input as defining a no-fly area and passes that no-
fly area to the UAV planner. In the lower pane, SID indicates
the constructed no-fly area on the map and provides feedback
to the user about the newly constructed route around the desig-
nated no-fly area.

In the case of a real UAV, we have connected to a Parrot
ARDrone [23], to which we have added video processing to
find particular landing site markers. Here, the interaction is
remote via speech and via a marker on the ground indicating
the position of the landing site. The dialogue begins when the
aircraft is near the landing zone, and the user can tell the air-
craft to look for a particular type of marker. When the marker
is found, SID notifies the user and the user can then direct the
aircraft to land. Figure 7 illustrates the UAV in action. The left
panel shows the view from the aircraft’s forward-looking cam-

era, with processed video marking the found landing site. The
right panel shows the aircraft about to land on the marker.

VII. CONCLUSIONS AND FUTURE WORK
We have described a multi-modal intelligent user interface

called the Smart Interaction Device (SID) that allows a user to
interact with unmanned platforms in more natural ways. SID

Figure 5: (top) A user gesturing while speaking to a ground robot: “Go

over there”; (bottom) a tablet display with video feed and top-down
map views

Figure 6: Example of SID instantiated with a tablet computer, interacting

with a simulated helicopter.

Figure 7: SID directing a Parrot ARDrone UAV to a landing site

serves as a facilitator between the user and the unmanned plat-
form, interpreting the user’s high-level commands and convert-
ing them into low-level commands for the platform, and pro-
vided user-level feedback based on low-level status infor-
mation from the vehicle. SID fuses a variety of input modalities
(sketch, speech, gesture) to infer user’s intent. SID also engag-
es in a dialogue with the user to ensure that it understands the
user; for example, asking for clarification when the user’s input
is ambiguous. By acting as a smart facilitator, SID moves un-
manned platforms in the direction of supervisory control, mak-
ing them easier to use and freeing up users to perform other
tasks. SID is related to systems like WITAS [17] and QuickSet
[11], but explores how a cognitive architecture (Soar [9]) can
be used as the basis for an intelligent user interface, and broad-
ens the modalities of interaction from those earlier systems to
include speech, sketch, and gesture for interaction with differ-
ent types of unmanned platforms.

We have not yet completed a formal evaluation of SID to
gauge quantitatively its performance in terms of the goals sug-
gested earlier: natural interaction, increased user situational
awareness, and supervisory control. However, a number of the
features we have demonstrated are necessary precursors to
achieving these goals, including using multi-modal dialogue
without requiring the user to be heads-down in the display.
While we do not have firm results yet, some pilot studies indi-
cate that dialogue with SID helps to reduce the amount of work
the operator must do and the amount of stress that the operator
feels in performing a task. We have had informal evaluations
with representative users to get feedback on the system, and
have been able to roll in some suggested improvements. Our
next steps in this work are to perform a full usability evaluation
and further iterate on the dialogue strategies and interaction
modalities to make a more robust, user-friendly system.

REFERENCES
[1] R. Nullmeyer, et al., "Birds of Prey: Training Solutions to Human

Factors Issues," in IITSEC, Orlando, FL, 2007.
[2] H. A. Yanco and J. Drury, "Where am I?” Acquiring situation awareness

using a remote robot platform," presented at the IEEE International
Conference on Systems, Man and Cybernetics, 2004.

[3] T. B. Sheridan, Telerobotics, Automation and Human Supervisory
Control. Cambridge, MA: MIT Press, 1992.

[4] J. Brown, et al., "Soldier Experiments and Assessments using SPEAR
Speech Control System for UGVs," presented at the Axxociation for
Unmanned Vehicle Systems International (AUVSI), 2010.

[5] T. Kollar, et al., "Toward Understanding natural Language Directions,"
in IEEE International Conference on Human-Robot Interaction, Osaka,
Japan, 2010.

[6] M. Skubic, et al., "Using Spatial Language in a Human-Robot Dialog,"
in IEEE International Conference on Robotics and Automation,
Washington, DC, 2002.

[7] O. Lemon, et al., "Collaborative Activities and Multi-tasking in
Dialogue Systems," presented at the 3rd SIGdial Workshop on Discourse
and Dialogue, 2002.

[8] J. E. Laird, et al., "Soar: An Architecture for General Intelligence,"
Artificial Intelligence, vol. 47, pp. 289-325, 1991.

[9] J. E. Laird, "Extending the Soar Cognitive Architecture," in Artifical
General Intelligence, Memphis, TN, 2008.

[10] S. Oviatt, et al., "Designing the user interface for multimodal speech and
pen-based gesture applications: state-of-the-art systems and future
research directions," Human-Computer Interaction, vol. 15, 2000.

[11] P. R. Cohen, et al., "Quickset: Multimodal Interaction for Distributed
Applications," presented at the 5th ACM International Conference on
MultiMedia, 1997.

[12] M. Johnson, et al., "Unification-based multimodal integration," in
Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics, 1998.

[13] Sanna A., et al., "A Kinect-based natural interface for quadrotor
control.," presented at the 4th International ICST Conference on
Intelligent Technologies for Interactive Entertainment
(INTETAIN2011), Genoa, IT, 2011.

[14] S. Oviatt, et al., "When Do We Interact Multimodally? Cognitive Load
and MultiModal Communication Patterns," presented at the ICMI, State
College, PA, 2004.

[15] M. Maybury, "Intelligent User Interfaces: An Introduction," presented at
the 4th International Conference on Intelligent User Interfaces, 1999.

[16] J. Allen, et al., "Toward Conversational Human-Computer Interaction,"
AI Magazine, vol. 22, 2001.

[17] O. Lemon, et al., "A Multi-modal Dialogue System for Human-Robot
Conversation," in NAACL, 2001.

[18] D. Traum, "Semantics and Pragmatics of Questions and Answers for
Dialogue Agents," in International Workshop on Computational
Semantics, 2003, pp. pp 380-394.

[19] R. Doorenbos, "Production Matching for Large Learning Systems,"
PhD, Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA, 1995.

[20] R. Dale and E. Reiter, Building Natural Language Generation Systems.
Cambridge, UK: Cambridge University Press, 2000.

[21] E. Olson, et al., "Progress towards multi-robot reconnaissance and the
MAGIC 2010 competition. ," Journal of Field Robotics, (to appear).

[22] SoarTech. (2010). SimJr. Available: http://code.google.com/p/simjr/
[23] Parrot. (2011). Parrot ARDrone. Available: http://ardrone.parrot.com

