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ABSTRACT 
This research explores the feasibility of performing 
passive information capture on voice data in order to 
analyze and classify the contents of interpersonal 
communication.  The general form of this problem is very 
difficult as fully automated speech understanding 
technology does not exist. This is further complicated by 
battlefield realities including: noise, jargon and 
unstructured speech.  However, when specific topics are 
isolated for extraction, the challenge becomes 
manageable. Conceptual Spaces is used as a fusion 
framework to classify data passively captured by 
traditional speech recognition software coupled with fuzzy 
logic to provide matching of phonetics to jargon. Together 
these technologies prove to be a valuable fusion 
framework because of their ability to mitigate the high 
levels of errors inherent in speech recognition. An initial 
study focused on recognizing important topics in 
communications between commanders and field personnel 
amidst background chatter. Results indicate the 
Conceptual Spaces model is flexible enough to define 
“spaces” for military events, and the underlying 
optimization model used for classification was robust and 
fast enough to quickly and accurately classify the noisy 
scenario data. This technology enables a new and more 
general class of automation, permitting conversion of 
passive speech into structured data. 

The authors gratefully acknowledge the support 
provided by the Defense Advanced Research Projects 
Agency (DARPA). 

INTRODUCTION 
Military operations can experience significant delays 
between when soldiers report a battlefield event verbally, 

and when the verified event report is displayed with an 
appropriate symbol on a command interface. Also, 
valuable staff hours are spent transcribing the important 
elements of the conversation.  This delay in event 
reporting reduces situational awareness (SA) timeliness, 
impacts planning, and prevents automated fusion with 
other real-time data sources.  In order to increase SA and 
reduce battlefield event reporting latency, this research 
examines the feasibility of automating battlefield event 
reporting by combining traditional speech recognition 
techniques on radio transmissions with Conceptual Spaces 
and fuzzy logic as a fusion mechanism to classify the 
speech data into structured reports suitable for automated 
distribution and action.  There are three structural 
components of the envisioned system: 1) a fuzzy logic 
based speech augmentation system that uses grammars to 
extract and translate military specific terms based on 
contextual information,  2) a Conceptual Spaces (CS) 
inference system which computes the similarity of 
normalized conversations to predefined concepts, in this 
case, critical event reports, and 3) an automated event 
reporter which generates a structured report based on the 
CS model for consumption and automated action by 
electronic processing systems such as command post of 
the future (CPOF).  CPOF uses electronic event reports to 
automate notification of key resources, support data 
mining research, and support planning such as in a 
medical evacuation scenario.  The effectiveness of CPOF 
is reduced when the events must undergo the long delays 
often associated with manual transcription during critical 
events.   

The Passive Information Capture and Notation (PICaN) 
approach uses automatic speech recognition to generate a 
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list of candidate utterances, fuzzy logic to integrate 
background information and improve speech recognition, 
and conceptual spaces theory to produce a fuzzy 
classification of the reported event and an appropriate 
associated icon. The PICaN approach aims to reduce 
reporting latency by publishing event reports in near real 
time and will improve event labeling accuracy through its 
use of conceptual spaces for event classification.  This 
approach also benefits from requiring no additional 
equipment or training for soldiers in the field. 

The remainder of this paper outlines the use of speech 
recognition to passively capture dialogue, fuzzy logic to 
improve the speech recognition in a military context, the 
use of conceptual spaces to classify speech data into 
events, the design and results of an experiment to test the 
system, and conclusions and suggestions for a full PICaN 
system architecture. 

SPEECH RECOGNITION IN CONVERSATION 
Speech recognition software falls into two general 
categories: speaker-dependent and -independent.  Speaker 
dependent speech recognizers are designed for general 
speech but specific speakers.  This software can be trained 
with high accuracy to correctly interpret an individual 
speaker’s voice and works especially well for 
conventional English.  Unfortunately, speaker dependent 
speech recognizers require significant amounts of time 
training the recognition software and work poorly in noisy 
environments.  Speaker independent software was 
designed for applications that are quite common today in 
automated telephone interaction.  These work by 
substantially constraining the possible word choices, often 
in a hierarchical structure.   So in one case  the vocal range 
is constrained, and in the other the phonetic set, but both 
recognition paradigms present significant constraints.  In 
the military application envisioned, training the software 
to recognize each soldier in the field would not be 
practical nor would imposing word choice constraints.  In 
contrast, the TOC operators are well established so 
training would be possible.  This research concluded that 
the simplest approach was to have speaker independent 
software doing only keyword spotting for soldiers and 
more robust speaker dependent software at the TOC 
trained to the user.  This works extremely well in a 
military environment because operators are trained to 
repeat all critical information, so even if the field user end 
is noisy, the TOC operator is quite clear and the software 
can be well trained.  Even so, complex grammars and 
fuzzy contextual reasoning are required to make this 
structure effective. 
 Military dialogue contains much more varied speech 
than most automated systems are typically designed to 
handle. The highly uncontrolled military speech 

environment requires a large vocabulary of speech 
recognition terms. The large grammars required for the 
speaker independent speech recognition posed significant 
challenges and will be discussed in the following section. 
 In addition to challenges embedded in speech 
recognition, conversation has unique attributes.  First and 
most complex is context.  All conversations include 
hidden context which is used by the speakers to interpret 
information.  Thus, if in a military situation someone 
reports their unit is under fire; the operator understands 
their location, the size of the unit and that fire means 
weapons and not wild fires because of context.  Other 
forms of context are present in conventional conversation 
such as “How’s the weather there?”  Both parties know 
where “there” is.  The second conversation attribute is 
structure.  Many understanding systems take advantage of 
grammar formalisms to aid in understanding.  Sentence 
structure is not a useful constraint on conversations.  
“Enemy fire three o’clock!” would be not recognizable by 
such systems but is quite clear in speech.  A third 
conversation attribute is jargon, or micro-linguistics.  
These are speech constructs that are well understood by 
the participants, but are not standard English.  In texting, 
this includes such “words” as u, r, lol, emoticons, etc.  In 
the military, these are BREV-codes, such as SITREP, or 
pre-defined designators such as checkpoint Charlie 
(particular latitude and longitude). 

GRAMMARS AND PERFORMANCE 
Developing of custom grammars is a particularly 
important aspect of speech recognition for this and related 
environments because a significant number of important 
words are not English.  In our battlefield example, we 
recognized 6 categories of necessary extensions: 
1) Standard abbreviations: these are predefined 

jargon/terms associated with military operations such as 
SITREP. 

2) Locally assigned names: these are terms specific to the 
local mission and often are otherwise nonsensical word 
combinations. For example, Red Charlie may refer to a 
specific operation phase, or Thrifty Green may be a unit 
designator. 

3) Stop Words: these are terms with specific military 
contextual meaning such as “roger”, “break,” or “over.”  
These terms are useful in segmentation.  

4) Index identifiers: these are terms that are actually 
implied references, for example “SITREP” followed 
later by “alpha” refers to line A of a SITREP report  

5) Slang and acronyms: these are abbreviations that may 
be pronounced as letters, such as “I E D” or letters 
replaced by words, such as “mm” (millimeter) maybe 
pronounced “mike mike.”  In this same category are 
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word substitutions for letters such as “license plate 
Tango, Mary, …” 

6) Letter-number mixtures: these are quite common 
forms including AK47 and 25mm round. 
Although this broad spectrum of terminology presents a 

challenge for grammars, in the military, these terms exist 
in a variety of electronic forms suitable for grammar 
translation.   

The PICAN program used the Unisys Natural Language 
Speech Assistant to rapidly construct the speech 
recognizer grammars, which were deployed on the SRI 
DynaSpeak speaker-independent speech recognizer.  For 
speaker-dependent recognition, we used the Microsoft 
SAPI 5.1 engine.  Two difficulties were encountered in the 
initial speech recognition process attempts with speaker 
independent technology related to monolithic grammar 
files and free form remarks. 

A large monolithic grammar file, which contained all 
possible combination of expected utterances, produced a 
high rate of substitution, deletion, and insertion errors due 
to self-imposed limited recognition time and high level of 
required backtracking. These errors were reduced by 
creating separate grammars for each possible battlefield 
event reported; essentially creating a parallel processing 
environment. 

Initially, results were poor when attempting to recognize 
the longer ‘remarks’ sections of event reports in speech, 
which have the possibility of containing elements which 
fall outside the grammar, producing a high rate of false 
positives. This was mitigated by using a reject-word 
strategy and returning only recognized key-words. 

Since a single grammar was created for each event, the 
raw speech data was simultaneously fed into parallel 
speech recognition software instances, with one instance 
for each event grammar.  Running several instances of 
speech recognition software in parallel allowed the 
individual event grammars to be fully processed without 
timing out, and allowed the system to still respond in a 
near real time manner. 

Even with adaptations to the grammar files, speaker-
independent speech recognition data was characterized by 
high error rates, with both significant numbers of false 
positives and false negatives.  False positives were words 
that appeared in the results that did not actually appear in 
the spoken scenario. Of the total speaker independent 
speech recognition data, approximately 65% of the data 
were false positives.  Of all the false positives observed, 
approximately 10 percent were false positives with 
extremely high certainty.  False negatives consisted of 
identified key words in the scenario that did not appear in 
the final output.  Rates of false negatives were high. Up to 
70 percent of keywords did not appear in the speech 

recognition output.  The performance of the speaker 
independent speech recognition software is summarized in 
Table 1. 

Table 1: Speaker Independent Speech Recognition 
Performance Summary 

Performance Measure 
70% False Negatives – percentage of 

keywords missed 
65% False Positives- percentage of 

keywords said to be present but are not 
in source 

10% Severe False Positives- percentage of 
false positives with high certainty 
ratings. 

80% Probability of Detection – probability 
that the correct keywords were 
identified 

Speech recognition results contained a list of 
confidence-indexed key-word phrases used as input to the 
conceptual spaces algorithms.  

CONCEPTUAL SPACES (CS) 
Conceptual Spaces(CS) is a logical and mathematical 

construct allowing for the integration of diverse 
information components originally developed by 
Gardenfors[2]. An illustration of a CS model is the 
domains of weapon and number of rounds fired used to 
describe the concept of a small arms fire event.  A small 
arms fire event can be carried out by handguns, semi-
automatic pistols, or assault rifles which represent 
allowable properties of the weapon domain, and may have 
a number of rounds fired property of less than 600 rounds 
or greater than 600 rounds.  For classification purposes, 
we have extended CS structure to include mathematical 
constructs for fuzzy concept similarity computations and 
cross domain constraints formatted into forbidden 
pairs[1]. The concept of a small arms fire event may be 
constructed to include the forbidden pairs: (handgun, >600 
rounds) and (semi-automatic pistol, >600 rounds) to 
indicate that a valid small arms fire event concept only 
allows the weapon to be a handgun or semi-automatic 
pistol if less than 600 rounds are fired. These forbidden 
pairs take into account external knowledge of the cartridge 
capacity of each weapon type, the firing speed 
capabilities, and the typical length of small arms fire 
events. This basic framework was employed here to 
determine the extent to which a processed conversation 
string is similar to pre-defined concepts of military events. 

Conceptual spaces were used to represent the CPOF 
events as complex multidimensional geometries. These 
geometries are inherently convex polytopes, so they lend 
themselves nicely to optimized classification algorithms 
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via integer mathematical models. A conceptual space 
consists of quality dimensions contributing to several 
domains that are segmented into distinct properties.  An 
individual concept within a conceptual space consists of a 
set of allowed properties for each domain applicable to a 
concept, as well as a set of forbidden pairs that represent 
cross domain constraints.   

Several mathematical integer programs have been 
suggested to optimally classify an observation using 
conceptual spaces [1]. The existing approaches all look to 
classify an object by maximizing the amount of supporting 
information for each possible concept.  This research 
looked at not only maximizing the amount of supporting 
information, but also maximizing the amount of 
contradictory information as a basis for observation 
classification.  An object classification was chosen based 
on the ratio of supporting to contradictory information.  
The concept with the highest support/contradiction ratio 
was chosen as the optimal concept classification. 

CONCEPTUAL SPACES MATHEMATICAL 
MODEL 

An extension of the single observation integer program 
proposed in [1] was chosen as the basis for the Conceptual 
Spaces algorithm because a certainty score and 
contradiction score were needed for each possible concept. 
An observation consists of a set of property-certainty 
pairs.  In this experiment, property-certainty pairs were 
obtained from the speech recognition output. Two integer 
programming problems were formulated for each concept, 
a certainty model and a contradiction model, and together 
they were used to optimally decide what concept an 
observation belongs to.  The certainty model follows: 
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This integer program was run once for each concept in 
order to obtain a concept certainty score, or support value.  
The objective function, Equation 1, maximizes the 
similarity over the set of all property certainty pairs to the 
particular concept in question.  For each model the set of 
domains (D) and allowed properties (Pk) are changed to 
correspond to the appropriate concept.   Equation 2 says at 
least one property must be present from each domain.  
Equation 3 handles the cross-domain property constraints. 
The normalized results of this model provide a certainty 
score for each concept. This certainty score represents the 
amount of supporting evidence the observation provides 
for each concept.  A second integer program was run to 
maximize the contradictory information provided by the 
observation for each concept.  The model to maximize 
contradictory information for each concept follows: 
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The objective function, Equation 5, maximizes the 
similarity over the set of all property certainty pairs to the 
particular concept in question.  For each model the set of 
domains (D) correspond to the original concept domains, 
and the dis-allowed properties (P’

k) are those properties 
for each domain that were not allowed in the original 
concept.   Equation 6 says at least one dis-allowed 
property must be present from each domain. The 
normalized results of this model provide a contradiction 
score for each concept. The contradiction score represents 
the amount of contradictory evidence the observation 
provides for each concept.   

The final classification is made by choosing the concept 
with the highest certainty/contradiction ratio.  In the event 
of a tie, the certainty score is used as a tie-breaker. 
CONCEPTUAL SPACES FOR MILITARY EVENTS 
The set of domains and properties used in this experiment 
were developed in alignment with the speech recognizer 
grammars.   The domains were created around commonly 
discussed critical event components and included: 
Weapons, Events, Indicators & Equipment, Chemical 
Indicators, Location Descriptors, Sounds, Type of IED, 
Wounds, Caliber, Damage, and Device Initiation.  
Common words and phrases associated with these 
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domains were elicited from subject matter experts (SME) 
to form the properties for each domain.  The mapping of 
the domains to applicable concepts can be seen in Table 
2.   

Table 2: Domain to Concept Mapping 
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 A value of H means the domain has a high importance to 
the concept, and M or L indicates medium or low 
importance respectively.  These fuzzy values correspond 
to the relative importance of the domains to a specific 
concept, represented by pj values in the mathematical 
model.  As the table indicates, concepts were partially 
defined by the domains they contained.  An additional 
concept component was the allowed properties for each of 
their applicable domains. An example concept definition 
is provided for the IED concept in Table 3; a similar 
definition table was developed for each event. 

EXPERIMENT 
Using military subject matter experts, a training and test 
set of ten possible attack scenarios were created along 
with routine background “chatter”.  The following event 
types were chosen: grenade, improvised explosive device 
(IED), person-borne IED, vehicle-borne IED, insurgent 
vehicle, mine, mortar, small-arms fire, sniper, and rocket-
propelled grenade (RPG).The training set consisted of one 
scenario for each of the events, while the test set consisted 
of two additional scenarios for each event, providing a 
total of 30 scenarios. 

In addition, two non-critical event scenarios were also 
created to be used as negative outlying test variables. All 
scenarios varied in their sequence of reported event 
characteristics, some followed prescribed reporting 
structures as expected by operations, but others allowed 

for completely unstructured responses as sometimes 
happens during crisis or when events are incompletely 
formed. For simplicity in this initial experiment, the 
scenarios were constrained to include only one incident.  
Table 3: Domains and Allowed Properties for IED Concept 

Domain Salience Allowed Properties 
Device 
Initiation 

.02 Cell phone, LRCP, Motorola, 
nokia 

Chem 
Indicators 

.01 Blistering, chlorine, irritation, 
phosphorus, white phosphorus 

Weapon .4 IED, road side IED, 
unexploded IED, UXO 

Sounds .1 Exploded, explosion 
Events .4 IED exploded, IED went off, 

went off 
Type of IED .02 Artillery shell, EFP, MGM, 

propane tank, UBE 
Equipment .01 Shovel, shovels 
Indicators .01 Digging, disturbed earth, 

exposed wires, trash 
Damage .01 (Bradley|vehicle| equipment) 

& (damaged| destroyed|hit)  
Caliber .01 155, 60, 80, 300, 120 
Wounds .01 Shrapnel 
 

Training and test scenarios included conversations 
between the unit commander and a Tactical Operations 
Center analyst.  Labeled scripts were created to represent 
the conversations and were recorded into pulse-code 
modulation (PCM) based audio files sampled at 8 Khz, 
16-bit mono. Utterance length varied from single word, 
i.e. “roger”, to multiple word remarks containing close to 
40 words.  

The training set of scenarios was used to tune the speech 
recognizer grammars and parameters. The tuning consisted 
of processing the speech files through the recognition 
software, passing the results to the conceptual spaces 
algorithm, and adjusting both the speech recognition 
grammars and the conceptual spaces event concept 
definitions in an attempt to improve performance.  After 
several iterations of tuning, the test scenarios were passed 
through both systems with no further performance tuning.  
The two non-event scenarios were also processed after 
initial training was completed. 

RESULTS 
The CS models performed very well, even when the 

speech recognition software had high error rates.  Speaker 
independent systems generated high error rates, while 
speaker dependent systems had lower error rates.  The 
former case was used to illustrate the systems 
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effectiveness even with very poor speech recognition.  The 
latter case is more realistic since TOC operators can easily 
afford the application training time.   

The results of the speech recognition output included 
files for 20 event scenarios and two non-event scenarios, 
with a confidence score for each recognized utterance. 
Each of the 22 test scenarios was run through the 
conceptual spaces algorithm.  The output of the algorithm 
was an ordered list of event-certainty pairs, with the most 
likely event listed first. These ordered lists were analyzed 
to determine the overall performance of the conceptual 
spaces algorithm for both event classification and 
event/non-event recognition. 

The research team investigated the performance of 
speaker dependent speech recognition applied only to the 
TOC analyst.  The portions of the scenario files 
corresponding to TOC speech were analyzed with speaker 
dependent recognition software trained on the TOC 
speaker.  The speaker dependent data produced near 100% 
recognition of key words, corresponding to roughly 100% 
probability of detection and 0% probability of false 
negatives. These superior speech recognition results were 
run through the conceptual spaces algorithm leading to 
90% correct classification of events. The results of the 
processing of speaker dependent speech are summarized in 
Table 4.  

Table 4: Conceptual Spaces Performance Summary For 
Speaker Dependent Recognition 

Performance Measure 
90% Correct Classification  
10% Incorrect Classification  
0% False Negatives  

 
Results for the speaker independent speech recognition 

data were also respectable despite the inherent high error 
rates of the recognition system. Of the 20 event scenarios 
70% of the events were classified correctly.  A correct 
classification was determined to be either the correct event 
with the highest conceptual spaces certainty or a similar 
event containing the highest certainty with the correct 
event still in the top three. For example, a sniper event 
scenario classified as a small arms fire scenario would be 
considered a correct classification if sniper was also in the 
top three.  

Of the 20 event scenarios 30% of the events were miss-
classified, but the certainty level of the correct event label 
was still greater than the non-event threshold.  There was a 
zero percent false negative rate, meaning no events were 
miss-classified as non-events. 

Of the two non-event scenarios, only one was correctly 
classified as a non-event, leading to a 50% false alarm 

rate. The conceptual spaces classification results for the 
speaker-independent speech recognition are summarized 
in Table 5. 

Table 5: Conceptual Spaces Performance Summary For 
Speaker Independent Recognition 

Performance Measure 
70% Correct Classification  
30% Incorrect Classification  
50% False Alarm  
0% False Negatives  

DISCUSSION OF RESULTS 
The results indicate that the conceptual spaces algorithm 
has a desired bias towards preventing false negatives.  
None of the 20 real event scenarios were miss-classified as 
non-events, and the speaker dependent speech recognition 
results allowed for 90% correct event classification.  

The results of the speaker independent speech 
recognition, despite significant efforts to increase 
performance by adjusting grammar files and software 
parameters, were poor.  Speech recognition results were 
characterized by high rates of false positives and false 
negatives, leading to important words dropped from the 
output and a large set of unexpected words included in the 
output.  Poor speech recognition may be due to a number 
of variables, including less-than mature speech recognizer 
models,  sub-optimized recognizer parameters, and/or 
information overload, i.e. the 2000 millisecond 
recognition window was too small to capture the 
significant key word(s) in longer utterances.     
 The poor speaker independent speech recognition data 
challenged the conceptual spaces algorithm:   The high 
false negative rate of keywords left conceptual spaces with 
few event identifying words to process.  Additionally, the 
false positives with high certainty provided a significant 
amount of misleading evidence.  Despite these data 
shortfalls conceptual spaces was still able to correctly 
classify 70% of the event scenarios.  This suggests two 
things: (1) the conceptual spaces framework can be 
successfully used to describe military events, and (2) the 
conceptual spaces classification algorithm performs well 
even with data with high uncertainty and poor quality.  
Ideally, once the event is correctly identified, the system 
would match it with an accepted military icon/symbol and 
transmit a structured report, along with an uncertainty 
factor, to a receiving system such as CPOF. 

POSSIBILITIES FOR FUTURE RESEARCH 
This initial research study has provided valuable insight 
into future research applications.  Some future extensions 
to this research include: 
1) Non-Real-Time Systems.  All of the systems we 

experimented with were designed for real-time 
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responses.  This constrained their reasoning process.  
When the extended grammars were included, the 
systems did poorly since results had time constraints.  In 
our envisioned application of a passive background 
system, accuracy is more important than time.  A few 
extra cycles improving accuracy are well worth modest 
delays.   

2) Automated Grammar Ingest: most of our grammar 
structure was developed manually.  However, much of 
the proper military report data exists to allow automated 
ingest. 

3) Handling of Multiple Event Scenarios: 
communications where multiple events are reported by a 
single source need to be handled.  For example, an IED 
detonation may be followed by small arms fire.  The 
classification algorithm needs to be augmented in order 
to classify the simultaneous events properly.   

CONCLUSIONS 
An experiment was completed to examine the feasibility 
of automating battlefield event reporting and the 
conversion of attack events into a standard reporting 
format and military symbol.  By combining speech 
recognition, fuzzy logic and conceptual spaces algorithms, 
initial results are excellent when we consider the operator 
with speaker dependent processing, and are promising in 
the much more hostile environment associated with noise 
and speaker independent processing. In order to examine 
possible methods of increasing the accuracy of event 
detection and mapping, the following algorithms have 
been briefly tested as a forward look to an eventual 
system:  

The use of speaker-dependent speech recognition to 
enhance event identification accuracy through the analysis 

of clarification speech offered by the TOC analyst to the 
field commander, since almost each phrase communicated 
by the field commander to the TOC analyst is confirmed 
in full utterances by the analyst in a controlled 
environment; 
• Normalization, through tested and well known 

phonetic processing technologies, of standard military 
acronyms, grid locations, call signs and other 
commonly used abbreviated phrases, into fully formed 
phrases; 

• Automatic identification of changes in tactics related 
to events and sub-events by the extraction of word 
associations;  

• Fusion of conversationally derived event data with 
other sources including sensors and citizenry 
reporting. 

A proposed architecture taking into account these 
suggestions and other system enhancements is seen in 
Figure 1.  This proposed system architecture provides a 
system to convert ad hoc contacts/reports into validated 
actionable information streams.  Extensions include fusing 
citizenry,  legacy military patrol, and sensor data-reports, 
machine learning algorithms for novel event 
characteristics, and entity extraction of speaker dependent 
and independent speech recognition to enhance event 
classification and reporting.  
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Figure 1: Proposed PICaN System Architecture 
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