
Comparing Modeling Idioms in ACT-R and Soar

Randolph M. Jones (rjones@soartech.com)
Soar Technology, 44 Burleigh Street

Waterville, ME 04901 USA

Christian Lebiere (cl@cmu.edu)
Psychology Department, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213 USA
Jacob A. Crossman (jcrossman@soartech.com)

Soar Technology, 3600 Green Court Suite 600
Ann Arbor, MI 48105 USA

Abstract

This paper examines some of the constraints on cognition
assumed and imposed by the ACT-R and Soar cognitive
architectures. In particular, we study how these constraints
either encourage or require particular types of “modeling
idioms” in the form of programming patterns that commonly
appear in implemented models. Because of the nature of the
mapping of the architectures to human cognition, each
modeling idiom translates relatively directly into changes in
model behavior data, such as decision timing, memory access,
and error rates. Our analysis notes that both architectures
have sometimes adopted extreme and opposed constraints,
where the human architecture most likely relies on some
mixed or more moderate set of constraints.

Implications of Architectural Constraints on
Cognitive Modeling

Experienced cognitive modelers are well aware that “the
devil is in the details,” particularly when it comes to fine-
grained models of deliberative behavior. Changes in the
particular reasoning path chosen to model a task can
manifest themselves as differences in task timing, type and
rates of errors, and overall strategy differences. Cognitive
architectures such as Soar (Laird, Rosenbloom, & Newell,
1987) and ACT-R (Anderson & Lebiere, 1998) implement
constraining assumptions that encourage and sometimes
require particular types of modeling idioms or patterns that
in turn impact the data the model produces.

This paper compares some of the modeling idioms
(perhaps alternatively described as programming patterns)
that commonly appear in Soar and ACT-R models of
decision making. We have come across many of these
comparisons while developing HLSR, a language for
building models that can compile both to ACT-R and to
Soar (Jones et al., 2006). It is interesting that, although
ACT-R and Soar are in some ways “close cousins”, there
are significant differences in how some types of low-level
reasoning tasks must be modeled, although these differences
are not necessarily obvious without getting into model
details. In many cases, each architecture has adopted
constraints that are diametrically opposed to each other,
where an alternative architecture might encourage a more
moderate or mixed approach.

Constraints in cognitive architectures often manifest
themselves as computational bottlenecks that are inspired by
assumed limitations on human processing. In ACT-R 6.0
(Anderson et al, 2004), there is a “cognitive bottleneck” that
allows only one production rule instantiation to fire at a time
(even if multiple rule instantiations currently match), and

there are information bottlenecks that allow only one chunk
per architectural module to be accessible for production
matching through that module’s buffer. In particular, that
means that only one goal can be active at any time and that
only one chunk can be retrieved from long-term declarative
memory at a time. These limitations imply that complex
logical decisions must be implemented via sequences of
retrievals and actions, which in turn impacts the timing of
retrieval/decision sequences.

In Soar 8.6, multiple rule instantiations can fire at once,
and access to declarative memory is essentially unlimited.
However, Soar imposes a cognitive bottleneck by allowing
only one “operator object” to be selected at a time.
Additionally, all operator selections must occur through
Soar’s preference/decision mechanism. Finally, in order to
maintain logical self-consistency, operator objects can
become automatically unselected if their logical
preconditions become unmatched. This latter effect implies
that individual Soar operators can usually not implement
long sequences of actions. Such sequences must instead be
implemented by series of operators, which can have an
impact on the timing and granularity of decision sequences.

These combinations of imposed constraints and
bottlenecks dictate some of the types of modeling idioms
that programmers typically use when implementing
decision-making processes in each architecture. The
remainder of this paper provides examples contrasting four
of these types of idioms.

Sequences of Decisions and Actions
ACT-R production rules are allowed to execute multiple
actions at a time, but in a limited fashion. They can make
changes to the contents of each architectural buffer (for this
paper’s purposes, we will concern ourselves only with the
goal and retrieval buffers). Consider the following example
rule from a Towers-of-Hanoi model, which makes a change
to the chunk in the goal buffer while simultaneously
initiating a new retrieval to the retrieval buffer.

(p find-next-tower
 =goal>
 isa move-tower
 disk =disk
 peg =peg
 state nil
==>
 !output! "Retrieving disk smaller than ~S" =disk
 +retrieval>
 isa next-smallest-disk
 disk =disk
 =goal>
 state next)

Individual Soar rules can also implement multiple actions
simultaneously. However, Soar rules are allowed to test
complex logical patterns with more flexibility than in ACT-
R, and multiple Soar rule instantiations can fire at the same
time. As a result, a common Soar modeling idiom is to
tease apart individual types of actions into separate rules.
This allows the development of more adaptive code that
does not introduce “artificial” conjunctions of conditions
just because the modeler wants multiple things to happen at
once. For the above example, the Soar idiom would
typically divide into two separate rules, as shown below.
These rules access a “current-retrieval” object that mimics
ACT-R’s retrieval buffer (there is no architectural
requirement for such a buffer in Soar models). The first rule
initiates the retrieval, while the second makes the change to
the goal state. Notice that the first rule can fire even if some
other set of conditions want to change the goal state. The
second rule can fire whenever the appropriate information is
in the retrieval buffer, regardless of which process might
have initiated that retrieval.
sp {find-next-tower*apply*retrieve
 (state <s> ^operator <o> ^current-goal <g>
 ^next-smallest-disk <nsd>)
 (<o> ^name find-next-tower
 ^goal <g> ^disk <disk>)
 (<nsd> ^disk <disk>)
 -(<s> ^current-retrieval <nsd>)
 (<disk> ^name <dname>)
-->
 (write (crlf) |Retrieving disk smaller than |
 <dname>)
 (<s> ^change-value <cv>)
 (<cv> ^id <s> ^att current-retrieval
 ^value <nsd>)}

sp {find-next-tower*apply*change-state
 (state <s> ^operator <o> ^current-goal <g>
 ^next-smallest-disk <nsd>)
 (<o> ^name find-next-tower
 ^goal <g> ^disk <disk>)
 (<nsd> ^disk <disk>)
 (<s> ^current-retrieval <nsd>)
 -(<g> ^state next)
-->
 (write (crlf) |Moving to state "next"|)
 (<s> ^change-value <cv>)
 (<cv> ^id <g> ^att state ^value next)}
In any rule-based system, combinations of conditional
actions must either be implemented by a combinatorial
number of rules covering the space of possible condition
combinations or by a set of rules that reason through the
combination of conditions. One important difference is that
Soar models can sometimes execute such rule combinations
in parallel where ACT-R must execute them in sequence.
Either choice has an impact on the timing of decision
making, as well as the types of errors and adaptivity that the
model might produce.

The standard Soar idiom for implementing multiple
actions can also encounter problems that impact timing,
errors, and adaptivity. The typical approach in Soar would
have a single operator object that has associated with it
multiple rules that implement the conditional logic for
various combinations of actions. However, different
sequences of action may require rule-firing sequences of
different lengths, some of which can cause the operator

object to be deselected automatically (this is in fact the case
in the above example, where there are additional rules that
match against the “change-value” pattern). This can
introduce “race conditions” where one stream of decision
making does not get a chance to complete because another
stream has deselected the operator. Consider the following,
slightly more complicated, ACT-R rule, which implements
three separate actions simultaneously.

(p clear-disk
 =goal>
 isa move-disk
 disk =disk
 peg =peg
 state peg
 =retrieval>
 isa disk-on-peg
 disk =disk
 peg =on
 - peg =peg
==>
 !output! "Subgoaling clear-disk with disk ~S on
peg ~S to peg ~S parent ~S" =disk =on =peg =goal
 +goal>
 isa clear-disk
 disk =disk
 current =on
 peg =peg
 parent =goal
 +retrieval>
 isa next-smallest-disk
 disk =disk
 =goal>
 state =retrieval)

Attempting to implement this with a single Soar operator
would almost certainly lead to race conditions that would
cause the model to break. The standard Soar idiom to
respond to such a situation is to break these simultaneous
conditional actions into individual operators, so they cannot
race with each other. But because Soar only allows one
operator at a time, this imposes sequential processing, where
the initial desire was to implement a set of parallel actions.
Again, a combination of constraints within the architecture
directly leads to meaningful changes in the data that models
will produce.

Sequential vs. Parallel Memory Retrieval
In ACT-R, the combined bottlenecks for individual rule
firing and memory access through a retrieval buffer produce
a common idiom for accessing and processing elements
from long-term declarative memory. Before any memory
object can be accessed, it must first be fetched into the
retrieval buffer. Thus, the idiom is to include one rule (or
more) to initiate the retrieval, and one rule (or more) to
“harvest” the retrieved item, processing it in the desired
way. Below are two example rules, again from a Towers-
of-Hanoi model. These rules process a “clear-disk” goal by
creating a subgoal to move the “next smaller tower” off of
the current disk. In order to accomplish this, the ACT-R
model must first find a peg to move the subgoal tower to.
This is accomplished by searching for a spare peg and
fetching it into the retrieval buffer, where it then becomes
available to provide information for the new subgoal.
(p find-spare-peg

 =goal>
 isa clear-disk
 disk =disk
 current =on
 peg =peg
 state nil
 =retrieval>
 isa next-smallest-disk disk =disk next =next
==>
 !output! "Next smaller disk to ~S is ~S and
retrieving peg other than ~s and ~S" =disk =next
=on =peg
 =goal>
 disk =next
 state other
 +retrieval>
 isa spare-peg
 current =on
 destination =peg)

(p clear-tower
 =goal>
 isa clear-disk
 disk =disk
 current =on
 peg =peg
 state other
 parent =parent
 =retrieval>
 isa spare-peg
 current =on
 destination =peg
 other =other
==>
 !output! "Subgoaling move-tower with disk ~S
peg ~S parent ~S" =disk =peg =parent
 +goal>
 isa move-tower
 disk =disk
 peg =other
 parent =parent)

As in our first example above, a Soar model could be
built similarly by mimicking the retrieval buffer within
Soar’s working memory. However, the more typical idiom
in Soar would take advantage of Soar’s unfettered access to
all elements in declarative memory. In such a Soar model, a
single rule can perform a complex conditional query and use
the information to create the desired subgoal, without
requiring the extra step of going through a retrieval buffer.

sp {clear-disk*propose*create-subgoal*move-tower
 (state <s> ^current-goal <g> ^disk <disk>
 ^next-smallest-disk <nsd>
 ^spare-peg <sp>)
 (<g> ^name clear-disk ^disk <disk>
 ^current <on> ^peg <peg> ^parent <parent>)
 (<nsd> ^disk <disk> ^next <next>)
 (<sp> ^current <on> ^destination <peg>
 ^other <other>)
 (<next> ^name <dname>)
 (<peg> ^name <pname>)
 (<other> ^name <oname>)
-->
 (write (crlf) |Create new subgoal move-tower
disk | <dname> | to peg | <oname> | to replace
clear-disk from peg | <pname>)
 (<s> ^operator <o>)
 (<o> ^name create-subgoal ^goal <ng>)
 (<ng> ^name move-tower ^disk <next> ^peg <other>
 ^parent <parent> ^clear-parent *yes*)}

In general, the lack of a retrieval buffer in Soar allows
Soar models to be written in a more compact way with more
opportunities for the reuse of individual operators and rules.
The primary potential downside is that many Soar models
do not take the memory-retrieval bottleneck seriously, as
ACT-R models must. It is possible to find Soar models that
have literally hundreds of accessible items in their
declarative memory at one time, although this is generally
truer for “applied” Soar systems than it is for serious
cognitive models built in Soar. There are a number of Soar-
based cognitive models that self-impose more declarative-
memory constraints than the architecture itself requires
(e.g., Wray & Chong, 2005; Young & Lewis, 1999). It is
also worth noting that Soar models with large declarative
memories are usually compensating for the fact that they do
not use Soar’s built-in learning mechanism. Models that use
learning usually use the learned rules for declarative access,
rather than relying on huge declarative memories. The
situation is similar in ACT-R, except that ACT-R’s
constraints are more forceful in the sense that it is more
difficult to “cheat” in the ways that you sometimes can
when using Soar.

There are some senses in which loosely limited
declarative memory access may be plausible, but other
senses in which it certainly is not. On the other hand, the
restriction in ACT-R to have a single retrieval buffer that
can hold only a single chunk is probably overly restrictive in
some cases. In the example above, it would seem
reasonable that a model of even a slightly experienced
Towers-of-Hanoi practitioner should just “know” what the
third peg is. However, under the current architectural
constraints, that is only possible by encoding in the
production rules all the combinatorial possibilities of origin
and destination pegs (admittedly a limited number with only
three pegs, but still too large to be considered elegant or
even plausible). It would seem plausible to have a small
number of frequently and/or recently used chunks directly
accessible from some sort of working memory, but that is
currently only possible by having the modeler pack a given
buffer with the content of those chunks, a practice that often
leads to brittle and/or implausible models. Both
assumptions lead to interesting models that are qualitatively
different, but perhaps plausible and implausible in their own
ways.

The main reason for the differing idioms in this case is
that Soar implements its “retrieval process” through rules
and rule conditions that can encode arbitrarily complex
conjunctions of declarative memory elements. Retrieval in
ACT-R is instead a sequential process that takes a set of
cues as input and returns a single set of elements to fill the
retrieval buffer. Both of these approaches to memory access
manifest themselves in modeling idioms that predict
different types of behavior. In this case, it is interesting to
note that each architecture adopts a rather extreme approach
to memory access, where a more accurate model of the
human architecture would probably be somewhere in
between the two. It seems unlikely that human memory is

limited to holding accessible a single chunk at a time (e.g.
Miller, 1956), but equally unlikely that human memory is
capable of unfettered retrieval of arbitrarily complex
conjunctions.

Partial Matching vs. Preferences for Conflict
Resolution

One of the more unique aspects of the Soar architecture
involves its mechanisms for supporting symbolic rule-based
preferences for conflict resolution. In Soar, all conflict
resolution centers around deciding which operator object to
select next, and this is generally accomplished by preference
rules that propose binary comparisons between the various
candidates (O1 is better than O2, O2 is just as good as O3,
etc.). The rule-based preference mechanism is necessary
because there is no architectural conflict resolution
mechanism (other than the architectural component that
makes a selection based on the symbolic preferences).

In ACT-R, conflict resolution centers around two types of
choices: which rule instantiation should fire next and which
chunk should be retrieved from declarative memory into the
retrieval buffer. ACT-R includes architectural mechanisms
to support both of these modes of conflict resolution. Both
mechanisms are similar, being grounded in subsymbolic
concepts (utility and activation, respectively) and including
similar restrictions such as learning constraints. Thus, the
idiom in ACT-R modeling is to create numerically oriented
“preferences” that are assumed to reflect some sort of
learning from prior experience. The Soar idiom is to encode
the preferences as (sometimes complex) sets of logical
ordering constraints (which are also assumed to be learned).
The result is that we see some significant differences
between ACT-R and Soar in conflict-resolution modeling,
depending on the type of model. For purely symbolic
models, ACT-R must include rule conditions that encode
the combinations of constraints that could be represented as
individual preference rules in a Soar model. However,
ACT-R also provides a subsymbolic partial-matching idiom
that is not directly available to Soar modelers. Similarly,
the most recent versions of Soar have introduced the ability
to specify numeric and probabilistic preferences, so there
are some new opportunities to explore non-symbolic
preference idioms in Soar, as well.

Following is a simple example of the relatively compact
representation of preferences that can be encoded into a
Soar model. In this example, the model is to select either an
“eat” operator or a “drink” operator, but it prefers to eat
before drinking.

sp {eat*propose
 (state <s> ^agent <a>)
 (<a> ^hungry yes)
-->
 (<s> ^operator <o> + =)
 (<o> ^name eat ^agent <a>)}

sp {drink*propose
 (state <s> ^agent <a>)
 (<a> ^thirsty yes)

-->
 (<s> ^operator <o> + =)
 (<o> ^name drink ^agent <a>)}

sp {prefer*eat*over*drink
 (state <s> ^operator <o1> + <o2> +)
 (<o1> ^name eat)
 (<o2> ^name drink)
-->
 (<s> ^operator <o1> > <o2>)}
Note that, if Soar did not include its preference-based
conflict-resolution mechanism, a modeler would be forced
to encode the semantics of the various preferences into the
operator proposal rules themselves. For example, in the
above code, we would have to change the drink proposal
rule to the following:

sp {drink*propose
 (state <s> ^agent <a>)
 (<a> ^thirsty yes -^hungry yes)
-->
 (<s> ^operator <o> + =)
 (<o> ^name drink ^agent <a>)}

A potential problem with this approach to conflict
resolution is that it will lead to a combinatorial explosion of
conditions for complex preferences between multiple
potential choices. In a purely symbolic ACT-R model, the
approach would be similar, but with an added constraint.
Because only one item can be in the retrieval buffer at a
time, an ACT-R model must test the different logical
conditions sequentially and either make each test depend on
the results of the previous one(s) or accumulate the results
in the goal (or some other) buffer for some final decision.
In contrast, Soar proposals can each check their
combinations of conditions with less restricted access to
declarative memory. Thus the symbolic ACT-R approach
might look as follows:

(p check-hungry
 =goal>
 isa agent
 name =name
 state nil
==>
 +retrieval>
 isa property
 agent =name
 attribute hungry
 value yes
 =goal>
 state hungry)

(p check-thirsty
 =goal>
 isa agent
 name =name
 state hungry
 =retrieval>
 isa error
==>
 +retrieval>
 isa property
 agent =name
 attribute thirsty
 value yes
 =goal>
 state thirsty)

In the above example, the first rule’s retrieval will
succeed if and only if there is a “hungry” property with a
value of “yes” in declarative memory. If that retrieval fails,
the check-thirsty rule will look for a “thirsty” property with
a value of “yes”. However, ACT-R modelers are not
restricted to doing symbolic conflict resolution. For choices
like this, ACT-R also supports similarity-based partial
matching for retrieval. It is possible to define a “similarity
relationship” between different attribute values, which will
in turn influence how the retrieval process executes. Using
ACT-R’s partial-matching mechanism, we can rëimplement
the above example as follows:
(setsimilarities (hungry thirsty -0.5))

(p choose-action
 =goal>
 isa agent
 name =name
 state nil
==>
 +retrieval>
 isa property
 agent =name
 attribute hungry
 value yes
 =goal>
 state unknown)

In this case, the attribute values “hungry” and “thirsty”
are set to be relatively dissimilar to each other. But the fact
that they are defined with any similarity measure at all
indicates that they are candidates to be substituted for each
other in any partial-matching retrieval. Thus, the choose-
action rule initiates a search for “hungry yes”, and it will
retrieve a perfectly matching chunk if one exists in
declarative memory. But if there is no perfectly matching
chunk, the retrieval process will instead look for the closest
partial match. In this case, a chunk representing “thirsty
yes” would be the next best match. Based on whichever
chunk happens to get retrieved, the program can then choose
to “eat” or “drink”, as appropriate. However, if the set of
options is so complex or heterogeneous that checking the
options cannot be reduced to a single retrieval, then an outer
loop must be explicitly maintained to access the various
options sequentially, where in Soar they could be combined
into a single complex conditional rule. The problem in
ACT-R is that if each option involves checking some
additional condition (such as perceptual or memory
information), then the utility preferences are not helpful
because they would attempt to check the same condition
over and over again. Either an explicit round robin check of
the various conditions has to be set up symbolically in the
production conditions or learning of the utilities can be used
to iterate through the options by having the failure of each
option temporarily depress the utility of the production
selecting that option (Lebiere et al., in press).

Exhaustive Processing and Search
The final pattern we investigate involves performing
exhaustive iterative actions on a set of similar object or
chunk types. For example, imagine that declarative memory

contains a number of message objects, each with a text
attribute. We would like to build a model that iterates
through all of the messages and prints out the text value of
each one. In a Soar program this can be done relatively
simply because an individual operator application rule can
match against multiple objects at a time, and each matching
instantiation will execute simultaneously. For example, the
following Soar rule simultaneously finds all “unhandled”
message objects in declarative memory, prints their
messages, and marks the message objects as “handled”.

sp {handle-messages*apply
 (state <s> ^operator <o> ^message <m>)
 (<o> ^name handle-messages)
 (<m> ^text <t> ^message-handled false)
-->
 (write (crlf) | Message is: | <t>)
 (<m> ^message-handled false - true +)}

In contrast, ACT-R is restricted to matching one object at
a time through the retrieval buffer. In older versions of
ACT-R, this would be accomplished by iterating over a
sequence of retrievals and harvests, tagging each chunk as it
is processed. This approach also requires an additional rule
that detects when the retrieval process has failed to find any
further matching candidates for processing.

(p find-message-to-handle
 =goal>
 isa handle-message
 state nil
==>
 =goal>
 state harvest
 +retrieval>
 isa message
 handled false)

(p handle-message
 =goal>
 isa handle-message
 state harvest
 =retrieval>
 isa message
 text =text
 handled false
==>
 !output! "~S" =text
 =goal>
 state nil
 =retrieval>
 handled true)

(p finish-handle-message
 =goal>
 isa handle-message
 state harvest
 =retrieval>
 isa ERROR
 condition Failure
==>
 !output! "Done handling messages"
 =goal>
 state finished)

However, the most recent version of ACT-R does not
allow non-monotonic changes (such as tagging) to chunks in
the retrieval buffer, so new idioms are developing that rely
on the subsymbolic processing of the retrieval mechanism.

These new idioms encounter additional confounding factors.
A major problem is that the dynamics of the activation
calculus, and in particular the learning of the base level to
reflect frequency and recency of access, conspire against
that iterative process. Recently accessed chunks become
more active while chunks that have not been accessed decay
and become less active, leading to the opposite dynamics of
the iteration desired, namely a winner-take-all tendency to
retrieve the same candidate(s) again and again. One typical
idiom to get around this problem is to alter subsymbolic
processing parameters such as noise, in order to “break out”
of bad retrieval sequences. However, this is often only
partially successful in moving the iteration along.

Another example of iteration comes again from the
Towers of Hanoi. In this problem, it is useful to compute
which disk is currently at the top of a particular peg. In a
Soar model, the encoded logic is along the lines of “find a
disk on the peg for which all other disks on the peg have a
lower position”. Although this gets a bit messy, the logic
can be encoded in the conditions of a single Soar rule. In
contrast, an ACT-R model must implement this logic using
a sequential loop or by clever configuration of the partial-
matching mechanism. Although the sequential iteration can
be implemented in a relatively straightforward fashion, it
again runs into the stumbling block that ACT-R prefers to
retrieve the same disk repeatedly, instead of iterating
through all of the disks on the peg.

Note that it is also possible to implement sequential
iteration using operators in Soar. Soar does not include the
restriction against altering declarative memory items, so the
typical Soar idiom in such situations is to tag each object as
it is processed in sequence. However, depending on the
situation, the alternative idiom in Soar is to use a single rule
to process everything at once. It is certainly a valid
question, however, whether Soar ought to make it so easy to
do this type of computation. It could be argued persuasively
that humans in general cannot perform this type of
exhaustive, instantaneous, massively parallel processing,
and so it is a mistake for Soar to allow and even encourage
this type of solution. On the other hand, there are certainly
some types of massively parallel processing occurring in the
human architecture. So once again, we are faced with two
architectures that embody extreme constraints, where the
truth is probably a combination or compromise.

It should also be noted that there are particular problems
of this type that also require a sequential solution approach
in Soar. For example, although a Soar program can easily
use one rule to operate on a whole set of objects
simultaneously, it currently has no way to count the number
of objects in that set. For the task of counting the number of
elements in a set, both ACT-R and Soar demand
sequentially implemented solutions.

Conclusion
We have examined four classes of modeling idioms that
arise relatively directly from the combination of assumed
constraints on cognitive processing imposed by the ACT-R

and Soar cognitive architectures. We hope that these
examples provide a more detailed feeling to the modeling
community about what some of the differences and
similarities are between the architectures, particularly when
it gets to the nitty-gritty of building detailed models. From
a cognitive modeling perspective, this is not just an exercise
in examining computationally equivalent modeling
approaches. Each of the idioms implies measurable
differences in the type of data the models will produce. We
have also observed that the constraints and bottlenecks
assumed by each architecture tend be rather extreme and
often opposed to each other. We join others in
recommending future work that includes finding more
intermediate constraints on the cognitive architecture, which
should translate to some variation in the common modeling
idioms, and in turn to cognitive models that produce better
matches to human data.

References
Anderson, J., & Lebiere, C. (1998). The Atomic

Components of Thought. Mahwah, NJ: Lawrence
Erlbaum.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y . (2004). An integrated theory of
the mind. Psychological Review 111, (4). 1036-1060.

Jones, R. M., Crossman, J. A., Lebiere, C., & Best, B. J.
(2006). An abstract language for cognitive modeling.
Proceedings of the Seventh International Conference on
Cognitive Modeling. Trieste, Italy.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial
Intelligence 33(1): 1-64.

Lebiere, C., Archer, R., Best, B., & Schunk, D. (in press).
Modeling pilot performance with an integrated task
network and cognitive architecture approach. In Foyle,
D. & Hooey, B. (Eds.) Human Performance Modeling in
Aviation. Mahwah, NJ: Lawrence Erlbaum.

Miller, G. A. (1956). The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for Processing
Information. Psychological Review, 63, 81-97.

Wray, R., & Chong, R., (2005). Comparing cognitive
models and human behavior representations:
Computational tools for expressing human behavior.
Proceedings of the Infotech@Aerospace 2005
Conference, Arlington, VA. American Institute of
Aeronautics and Astronautics.

Young, R. M., & Lewis, R. L. (1999). The Soar cognitive
architecture and human working memory (1999). In A.
Miyake & P. Shah (Eds.), Models of Working Memory:
Mechanisms of Active Maintenance and Executive
Control, 224-256. Cambridge University Press.

Acknowledgments
This work was supported in part by contract N00014-05-C-
0245 from the Office of Naval Research. Many thanks to
Bob Wray for his helpful comments on an earlier draft.

	Comparing Modeling Idioms in ACT-R and Soar
	Randolph M. Jones (rjones@soartech.com)
	Soar Technology, 44 Burleigh Street
	Waterville, ME 04901 USA
	Christian Lebiere (cl@cmu.edu)
	Psychology Department, Carnegie Mellon University
	5000 Forbes Avenue, Pittsburgh, PA 15213 USA
	Jacob A. Crossman (jcrossman@soartech.com)
	Soar Technology, 3600 Green Court Suite 600
	Ann Arbor, MI 48105 USA
	Abstract
	Implications of Architectural Constraints on Cognitive Modeling
	Sequences of Decisions and Actions
	Sequential vs. Parallel Memory Retrieval
	Partial Matching vs. Preferences for Conflict Resolution
	Exhaustive Processing and Search
	Conclusion
	References
	Acknowledgments

