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Abstract 

This paper examines some of the constraints on cognition 
assumed and imposed by the ACT-R and Soar cognitive 
architectures.  In particular, we study how these constraints 
either encourage or require particular types of “modeling 
idioms” in the form of programming patterns that commonly 
appear in implemented models.  Because of the nature of the 
mapping of the architectures to human cognition, each 
modeling idiom translates relatively directly into changes in 
model behavior data, such as decision timing, memory access, 
and error rates.  Our analysis notes that both architectures 
have sometimes adopted extreme and opposed constraints, 
where the human architecture most likely relies on some 
mixed or more moderate set of constraints.  

Implications of Architectural Constraints on 
Cognitive Modeling 

Experienced cognitive modelers are well aware that “the 
devil is in the details,” particularly when it comes to fine-
grained models of deliberative behavior. Changes in the 
particular reasoning path chosen to model a task can 
manifest themselves as differences in task timing, type and 
rates of errors, and overall strategy differences.  Cognitive 
architectures such as Soar (Laird, Rosenbloom, & Newell, 
1987) and ACT-R (Anderson & Lebiere, 1998) implement 
constraining assumptions that encourage and sometimes 
require particular types of modeling idioms or patterns that 
in turn impact the data the model produces. 

This paper compares some of the modeling idioms 
(perhaps alternatively described as programming patterns) 
that commonly appear in Soar and ACT-R models of 
decision making.  We have come across many of these 
comparisons while developing HLSR, a language for 
building models that can compile both to ACT-R and to 
Soar (Jones et al., 2006).  It is interesting that, although 
ACT-R and Soar are in some ways “close cousins”, there 
are significant differences in how some types of low-level 
reasoning tasks must be modeled, although these differences 
are not necessarily obvious without getting into model 
details.  In many cases, each architecture has adopted 
constraints that are diametrically opposed to each other, 
where an alternative architecture might encourage a more 
moderate or mixed approach. 

Constraints in cognitive architectures often manifest 
themselves as computational bottlenecks that are inspired by 
assumed limitations on human processing.  In ACT-R 6.0 
(Anderson et al, 2004), there is a “cognitive bottleneck” that 
allows only one production rule instantiation to fire at a time 
(even if multiple rule instantiations currently match), and 

there are information bottlenecks that allow only one chunk 
per architectural module to be accessible for production 
matching through that module’s buffer.  In particular, that 
means that only one goal can be active at any time and that 
only one chunk can be retrieved from long-term declarative 
memory at a time.  These limitations imply that complex 
logical decisions must be implemented via sequences of 
retrievals and actions, which in turn impacts the timing of 
retrieval/decision sequences. 

In Soar 8.6, multiple rule instantiations can fire at once, 
and access to declarative memory is essentially unlimited.  
However, Soar imposes a cognitive bottleneck by allowing 
only one “operator object” to be selected at a time.  
Additionally, all operator selections must occur through 
Soar’s preference/decision mechanism.  Finally, in order to 
maintain logical self-consistency, operator objects can 
become automatically unselected if their logical 
preconditions become unmatched.  This latter effect implies 
that individual Soar operators can usually not implement 
long sequences of actions.  Such sequences must instead be 
implemented by series of operators, which can have an 
impact on the timing and granularity of decision sequences. 

These combinations of imposed constraints and 
bottlenecks dictate some of the types of modeling idioms 
that programmers typically use when implementing 
decision-making processes in each architecture.  The 
remainder of this paper provides examples contrasting four 
of these types of idioms. 

Sequences of Decisions and Actions 
ACT-R production rules are allowed to execute multiple 
actions at a time, but in a limited fashion.  They can make 
changes to the contents of each architectural buffer (for this 
paper’s purposes, we will concern ourselves only with the 
goal and retrieval buffers).  Consider the following example 
rule from a Towers-of-Hanoi model, which makes a change 
to the chunk in the goal buffer while simultaneously 
initiating a new retrieval to the retrieval buffer. 
 
(p find-next-tower 
   =goal> 
      isa move-tower 
      disk =disk 
      peg =peg 
      state nil 
==> 
 !output! "Retrieving disk smaller than ~S" =disk    
   +retrieval> 
      isa next-smallest-disk 
      disk =disk 
   =goal> 
      state next) 



Individual Soar rules can also implement multiple actions 
simultaneously.  However, Soar rules are allowed to test 
complex logical patterns with more flexibility than in ACT-
R, and multiple Soar rule instantiations can fire at the same 
time.  As a result, a common Soar modeling idiom is to 
tease apart individual types of actions into separate rules.  
This allows the development of more adaptive code that 
does not introduce “artificial” conjunctions of conditions 
just because the modeler wants multiple things to happen at 
once. For the above example, the Soar idiom would 
typically divide into two separate rules, as shown below. 
These rules access a “current-retrieval” object that mimics 
ACT-R’s retrieval buffer (there is no architectural 
requirement for such a buffer in Soar models). The first rule 
initiates the retrieval, while the second makes the change to 
the goal state.  Notice that the first rule can fire even if some 
other set of conditions want to change the goal state.  The 
second rule can fire whenever the appropriate information is 
in the retrieval buffer, regardless of which process might 
have initiated that retrieval. 
sp {find-next-tower*apply*retrieve 
   (state <s> ^operator <o> ^current-goal <g> 
              ^next-smallest-disk <nsd>) 
   (<o> ^name find-next-tower  
        ^goal <g> ^disk <disk>) 
   (<nsd> ^disk <disk>) 
  -(<s> ^current-retrieval <nsd>) 
   (<disk> ^name <dname>) 
--> 
   (write (crlf) |Retrieving disk smaller than | 
                 <dname>) 
   (<s> ^change-value <cv>) 
   (<cv> ^id <s> ^att current-retrieval  
         ^value <nsd>)} 
 
sp {find-next-tower*apply*change-state 
   (state <s> ^operator <o> ^current-goal <g> 
              ^next-smallest-disk <nsd>) 
   (<o> ^name find-next-tower 
        ^goal <g> ^disk <disk>) 
   (<nsd> ^disk <disk>) 
   (<s> ^current-retrieval <nsd>) 
  -(<g> ^state next) 
--> 
   (write (crlf) |Moving to state "next"|) 
   (<s> ^change-value <cv>) 
   (<cv> ^id <g> ^att state ^value next)} 
In any rule-based system, combinations of conditional 
actions must either be implemented by a combinatorial 
number of rules covering the space of possible condition 
combinations or by a set of rules that reason through the 
combination of conditions.  One important difference is that 
Soar models can sometimes execute such rule combinations 
in parallel where ACT-R must execute them in sequence.  
Either choice has an impact on the timing of decision 
making, as well as the types of errors and adaptivity that the 
model might produce.  

The standard Soar idiom for implementing multiple 
actions can also encounter problems that impact timing, 
errors, and adaptivity.  The typical approach in Soar would 
have a single operator object that has associated with it 
multiple rules that implement the conditional logic for 
various combinations of actions.  However, different 
sequences of action may require rule-firing sequences of 
different lengths, some of which can cause the operator 

object to be deselected automatically (this is in fact the case 
in the above example, where there are additional rules that 
match against the “change-value” pattern).  This can 
introduce “race conditions” where one stream of decision 
making does not get a chance to complete because another 
stream has deselected the operator.  Consider the following, 
slightly more complicated, ACT-R rule, which implements 
three separate actions simultaneously. 
 
(p clear-disk 
   =goal> 
      isa move-disk 
      disk =disk 
      peg =peg 
      state peg 
   =retrieval> 
      isa disk-on-peg 
      disk =disk 
      peg =on 
    - peg =peg 
==> 
   !output! "Subgoaling clear-disk with disk ~S on 
peg ~S to peg ~S parent ~S" =disk =on =peg =goal   
   +goal> 
      isa clear-disk 
      disk =disk 
      current =on 
      peg =peg 
      parent =goal 
   +retrieval> 
      isa next-smallest-disk 
      disk =disk 
   =goal> 
            state =retrieval) 

Attempting to implement this with a single Soar operator 
would almost certainly lead to race conditions that would 
cause the model to break.  The standard Soar idiom to 
respond to such a situation is to break these simultaneous 
conditional actions into individual operators, so they cannot 
race with each other.  But because Soar only allows one 
operator at a time, this imposes sequential processing, where 
the initial desire was to implement a set of parallel actions.  
Again, a combination of constraints within the architecture 
directly leads to meaningful changes in the data that models 
will produce. 

Sequential vs. Parallel Memory Retrieval 
In ACT-R, the combined bottlenecks for individual rule 
firing and memory access through a retrieval buffer produce 
a common idiom for accessing and processing elements 
from long-term declarative memory.  Before any memory 
object can be accessed, it must first be fetched into the 
retrieval buffer.  Thus, the idiom is to include one rule (or 
more) to initiate the retrieval, and one rule (or more) to 
“harvest” the retrieved item, processing it in the desired 
way.  Below are two example rules, again from a Towers-
of-Hanoi model.  These rules process a “clear-disk” goal by 
creating a subgoal to move the “next smaller tower” off of 
the current disk.  In order to accomplish this, the ACT-R 
model must first find a peg to move the subgoal tower to.  
This is accomplished by searching for a spare peg and 
fetching it into the retrieval buffer, where it then becomes 
available to provide information for the new subgoal. 
(p find-spare-peg 



   =goal> 
      isa clear-disk  
      disk =disk 
      current =on  
      peg =peg  
      state nil 
   =retrieval> 
      isa next-smallest-disk disk =disk next =next 
==> 
   !output! "Next smaller disk to ~S is ~S and 
retrieving peg other than ~s and ~S" =disk =next 
=on =peg    
   =goal> 
      disk =next  
      state other 
   +retrieval> 
      isa spare-peg  
      current =on  
      destination =peg) 
 
(p clear-tower 
   =goal> 
      isa clear-disk  
      disk =disk  
      current =on 
      peg =peg  
      state other  
      parent =parent    
   =retrieval> 
      isa spare-peg  
      current =on 
      destination =peg  
      other =other 
==> 
   !output! "Subgoaling move-tower with disk ~S 
peg ~S parent ~S" =disk =peg =parent   
   +goal> 
      isa move-tower  
      disk =disk 
      peg =other  
      parent =parent) 

As in our first example above, a Soar model could be 
built similarly by mimicking the retrieval buffer within 
Soar’s working memory.  However, the more typical idiom 
in Soar would take advantage of Soar’s unfettered access to 
all elements in declarative memory.  In such a Soar model, a 
single rule can perform a complex conditional query and use 
the information to create the desired subgoal, without 
requiring the extra step of going through a retrieval buffer. 

 
sp {clear-disk*propose*create-subgoal*move-tower 
  (state <s> ^current-goal <g> ^disk <disk> 
             ^next-smallest-disk <nsd>  
             ^spare-peg <sp>) 
  (<g> ^name clear-disk ^disk <disk> 
       ^current <on> ^peg <peg> ^parent <parent>) 
  (<nsd> ^disk <disk> ^next <next>) 
  (<sp> ^current <on> ^destination <peg> 
        ^other <other>) 
  (<next> ^name <dname>) 
  (<peg> ^name <pname>) 
  (<other> ^name <oname>) 
--> 
   (write (crlf) |Create new subgoal move-tower 
disk | <dname> | to peg | <oname> | to replace 
clear-disk from peg | <pname>) 
  (<s> ^operator <o>) 
  (<o> ^name create-subgoal ^goal <ng>) 
  (<ng> ^name move-tower ^disk <next> ^peg <other> 
        ^parent <parent> ^clear-parent *yes*)}   

In general, the lack of a retrieval buffer in Soar allows 
Soar models to be written in a more compact way with more 
opportunities for the reuse of individual operators and rules.  
The primary potential downside is that many Soar models 
do not take the memory-retrieval bottleneck seriously, as 
ACT-R models must.  It is possible to find Soar models that 
have literally hundreds of accessible items in their 
declarative memory at one time, although this is generally 
truer for “applied” Soar systems than it is for serious 
cognitive models built in Soar.  There are a number of Soar-
based cognitive models that self-impose more declarative-
memory constraints than the architecture itself requires 
(e.g., Wray & Chong, 2005; Young & Lewis, 1999).  It is 
also worth noting that Soar models with large declarative 
memories are usually compensating for the fact that they do 
not use Soar’s built-in learning mechanism.  Models that use 
learning usually use the learned rules for declarative access, 
rather than relying on huge declarative memories.  The 
situation is similar in ACT-R, except that ACT-R’s 
constraints are more forceful in the sense that it is more 
difficult to “cheat” in the ways that you sometimes can 
when using Soar. 

There are some senses in which loosely limited 
declarative memory access may be plausible, but other 
senses in which it certainly is not.  On the other hand, the 
restriction in ACT-R to have a single retrieval buffer that 
can hold only a single chunk is probably overly restrictive in 
some cases.  In the example above, it would seem 
reasonable that a model of even a slightly experienced 
Towers-of-Hanoi practitioner should just “know” what the 
third peg is.  However, under the current architectural 
constraints, that is only possible by encoding in the 
production rules all the combinatorial possibilities of origin 
and destination pegs (admittedly a limited number with only 
three pegs, but still too large to be considered elegant or 
even plausible).  It would seem plausible to have a small 
number of frequently and/or recently used chunks directly 
accessible from some sort of working memory, but that is 
currently only possible by having the modeler pack a given 
buffer with the content of those chunks, a practice that often 
leads to brittle and/or implausible models.  Both 
assumptions lead to interesting models that are qualitatively 
different, but perhaps plausible and implausible in their own 
ways. 

The main reason for the differing idioms in this case is 
that Soar implements its “retrieval process” through rules 
and rule conditions that can encode arbitrarily complex 
conjunctions of declarative memory elements.  Retrieval in 
ACT-R is instead a sequential process that takes a set of 
cues as input and returns a single set of elements to fill the 
retrieval buffer.  Both of these approaches to memory access 
manifest themselves in modeling idioms that predict 
different types of behavior.  In this case, it is interesting to 
note that each architecture adopts a rather extreme approach 
to memory access, where a more accurate model of the 
human architecture would probably be somewhere in 
between the two.  It seems unlikely that human memory is 



limited to holding accessible a single chunk at a time (e.g. 
Miller, 1956), but equally unlikely that human memory is 
capable of unfettered retrieval of arbitrarily complex 
conjunctions. 

Partial Matching vs. Preferences for Conflict 
Resolution 

One of the more unique aspects of the Soar architecture 
involves its mechanisms for supporting symbolic rule-based 
preferences for conflict resolution.  In Soar, all conflict 
resolution centers around deciding which operator object to 
select next, and this is generally accomplished by preference 
rules that propose binary comparisons between the various 
candidates (O1 is better than O2, O2 is just as good as O3, 
etc.).  The rule-based preference mechanism is necessary 
because there is no architectural conflict resolution 
mechanism (other than the architectural component that 
makes a selection based on the symbolic preferences).   

In ACT-R, conflict resolution centers around two types of 
choices: which rule instantiation should fire next and which 
chunk should be retrieved from declarative memory into the 
retrieval buffer.  ACT-R includes architectural mechanisms 
to support both of these modes of conflict resolution.  Both 
mechanisms are similar, being grounded in subsymbolic 
concepts (utility and activation, respectively) and including 
similar restrictions such as learning constraints.  Thus, the 
idiom in ACT-R modeling is to create numerically oriented 
“preferences” that are assumed to reflect some sort of 
learning from prior experience.  The Soar idiom is to encode 
the preferences as (sometimes complex) sets of logical 
ordering constraints (which are also assumed to be learned).  
The result is that we see some significant differences 
between ACT-R and Soar in conflict-resolution modeling, 
depending on the type of model.  For purely symbolic 
models, ACT-R must include rule conditions that encode 
the combinations of constraints that could be represented as 
individual preference rules in a Soar model.  However, 
ACT-R also provides a subsymbolic partial-matching idiom 
that is not directly available to Soar modelers.  Similarly, 
the most recent versions of Soar have introduced the ability 
to specify numeric and probabilistic preferences, so there 
are some new opportunities to explore non-symbolic 
preference idioms in Soar, as well. 

Following is a simple example of the relatively compact 
representation of preferences that can be encoded into a 
Soar model. In this example, the model is to select either an 
“eat” operator or a “drink” operator, but it prefers to eat 
before drinking. 

 
sp {eat*propose 
   (state <s> ^agent <a>) 
   (<a> ^hungry yes) 
--> 
   (<s> ^operator <o> + =) 
   (<o> ^name eat ^agent <a>)} 
 
sp {drink*propose 
   (state <s> ^agent <a>) 
   (<a> ^thirsty yes) 

--> 
   (<s> ^operator <o> + =) 
   (<o> ^name drink ^agent <a>)} 
 
sp {prefer*eat*over*drink 
   (state <s> ^operator <o1> + <o2> +) 
   (<o1> ^name eat) 
   (<o2> ^name drink) 
--> 
   (<s> ^operator <o1> > <o2>)} 
Note that, if Soar did not include its preference-based 
conflict-resolution mechanism, a modeler would be forced 
to encode the semantics of the various preferences into the 
operator proposal rules themselves.  For example, in the 
above code, we would have to change the drink proposal 
rule to the following: 
 
sp {drink*propose 
   (state <s> ^agent <a>) 
   (<a> ^thirsty yes -^hungry yes) 
--> 
   (<s> ^operator <o> + =) 
   (<o> ^name drink ^agent <a>)} 

A potential problem with this approach to conflict 
resolution is that it will lead to a combinatorial explosion of 
conditions for complex preferences between multiple 
potential choices.  In a purely symbolic ACT-R model, the 
approach would be similar, but with an added constraint.  
Because only one item can be in the retrieval buffer at a 
time, an ACT-R model must test the different logical 
conditions sequentially and either make each test depend on 
the results of the previous one(s) or accumulate the results 
in the goal (or some other) buffer for some final decision.  
In contrast, Soar proposals can each check their 
combinations of conditions with less restricted access to 
declarative memory.  Thus the symbolic ACT-R approach 
might look as follows: 

 
(p check-hungry 
   =goal> 
     isa agent  
     name =name  
     state nil 
==> 
   +retrieval> 
     isa property  
     agent =name  
     attribute hungry  
     value yes 
   =goal> 
      state hungry) 
 
(p check-thirsty 
   =goal> 
      isa agent  
      name =name 
      state hungry 
   =retrieval> 
      isa error 
==> 
   +retrieval> 
      isa property  
      agent =name 
      attribute thirsty  
      value yes 
   =goal> 
      state thirsty) 



In the above example, the first rule’s retrieval will 
succeed if and only if there is a “hungry” property with a 
value of “yes” in declarative memory.  If that retrieval fails, 
the check-thirsty rule will look for a “thirsty” property with 
a value of “yes”.  However, ACT-R modelers are not 
restricted to doing symbolic conflict resolution.  For choices 
like this, ACT-R also supports similarity-based partial 
matching for retrieval.  It is possible to define a “similarity 
relationship” between different attribute values, which will 
in turn influence how the retrieval process executes.  Using 
ACT-R’s partial-matching mechanism, we can rëimplement 
the above example as follows: 
(setsimilarities (hungry thirsty -0.5)) 
 
(p choose-action 
   =goal> 
      isa agent  
      name =name  
      state nil 
==> 
   +retrieval> 
      isa property  
      agent =name 
      attribute hungry  
      value yes 
   =goal> 
      state unknown) 

In this case, the attribute values “hungry” and “thirsty” 
are set to be relatively dissimilar to each other.  But the fact 
that they are defined with any similarity measure at all 
indicates that they are candidates to be substituted for each 
other in any partial-matching retrieval.  Thus, the choose-
action rule initiates a search for “hungry yes”, and it will 
retrieve a perfectly matching chunk if one exists in 
declarative memory.  But if there is no perfectly matching 
chunk, the retrieval process will instead look for the closest 
partial match.  In this case, a chunk representing “thirsty 
yes” would be the next best match.  Based on whichever 
chunk happens to get retrieved, the program can then choose 
to “eat” or “drink”, as appropriate.  However, if the set of 
options is so complex or heterogeneous that checking the 
options cannot be reduced to a single retrieval, then an outer 
loop must be explicitly maintained to access the various 
options sequentially, where in Soar they could be combined 
into a single complex conditional rule.  The problem in 
ACT-R is that if each option involves checking some 
additional condition (such as perceptual or memory 
information), then the utility preferences are not helpful 
because they would attempt to check the same condition 
over and over again.  Either an explicit round robin check of 
the various conditions has to be set up symbolically in the 
production conditions or learning of the utilities can be used 
to iterate through the options by having the failure of each 
option temporarily depress the utility of the production 
selecting that option (Lebiere et al., in press).  

Exhaustive Processing and Search 
The final pattern we investigate involves performing 
exhaustive iterative actions on a set of similar object or 
chunk types.  For example, imagine that declarative memory 

contains a number of message objects, each with a text 
attribute.  We would like to build a model that iterates 
through all of the messages and prints out the text value of 
each one.  In a Soar program this can be done relatively 
simply because an individual operator application rule can 
match against multiple objects at a time, and each matching 
instantiation will execute simultaneously.  For example, the 
following Soar rule simultaneously finds all “unhandled” 
message objects in declarative memory, prints their 
messages, and marks the message objects as “handled”. 
 
sp {handle-messages*apply 
  (state <s> ^operator <o> ^message <m>) 
  (<o> ^name handle-messages) 
  (<m> ^text <t> ^message-handled false) 
--> 
  (write (crlf) | Message is: | <t>) 
  (<m> ^message-handled false - true +)} 

In contrast, ACT-R is restricted to matching one object at 
a time through the retrieval buffer.  In older versions of 
ACT-R, this would be accomplished by iterating over a 
sequence of retrievals and harvests, tagging each chunk as it 
is processed.  This approach also requires an additional rule 
that detects when the retrieval process has failed to find any 
further matching candidates for processing.   

 
(p find-message-to-handle 
   =goal> 
      isa handle-message 
      state nil 
==> 
   =goal> 
      state harvest 
   +retrieval> 
      isa message 
      handled false) 
  
(p handle-message 
   =goal> 
      isa handle-message 
      state harvest 
   =retrieval> 
      isa message 
      text =text 
      handled false 
==> 
   !output! "~S" =text 
   =goal> 
      state nil 
   =retrieval> 
      handled true) 
 
(p finish-handle-message 
   =goal> 
      isa handle-message 
      state harvest 
   =retrieval> 
      isa ERROR 
      condition Failure 
==> 
   !output! "Done handling messages" 
   =goal> 
      state finished) 

However, the most recent version of ACT-R does not 
allow non-monotonic changes (such as tagging) to chunks in 
the retrieval buffer, so new idioms are developing that rely 
on the subsymbolic processing of the retrieval mechanism.  



These new idioms encounter additional confounding factors.  
A major problem is that the dynamics of the activation 
calculus, and in particular the learning of the base level to 
reflect frequency and recency of access, conspire against 
that iterative process.  Recently accessed chunks become 
more active while chunks that have not been accessed decay 
and become less active, leading to the opposite dynamics of 
the iteration desired, namely a winner-take-all tendency to 
retrieve the same candidate(s) again and again.  One typical 
idiom to get around this problem is to alter subsymbolic 
processing parameters such as noise, in order to “break out” 
of bad retrieval sequences.  However, this is often only 
partially successful in moving the iteration along.   

Another example of iteration comes again from the 
Towers of Hanoi.  In this problem, it is useful to compute 
which disk is currently at the top of a particular peg.  In a 
Soar model, the encoded logic is along the lines of “find a 
disk on the peg for which all other disks on the peg have a 
lower position”.  Although this gets a bit messy, the logic 
can be encoded in the conditions of a single Soar rule.  In 
contrast, an ACT-R model must implement this logic using 
a sequential loop or by clever configuration of the partial-
matching mechanism.  Although the sequential iteration can 
be implemented in a relatively straightforward fashion, it 
again  runs into the stumbling block that ACT-R prefers to 
retrieve the same disk repeatedly, instead of iterating 
through all of the disks on the peg. 

Note that it is also possible to implement sequential 
iteration using operators in Soar.  Soar does not include the 
restriction against altering declarative memory items, so the 
typical Soar idiom in such situations is to tag each object as 
it is processed in sequence.  However, depending on the 
situation, the alternative idiom in Soar is to use a single rule 
to process everything at once.  It is certainly a valid 
question, however, whether Soar ought to make it so easy to 
do this type of computation.  It could be argued persuasively 
that humans in general cannot perform this type of 
exhaustive, instantaneous, massively parallel processing, 
and so it is a mistake for Soar to allow and even encourage 
this type of solution.  On the other hand, there are certainly 
some types of massively parallel processing occurring in the 
human architecture.  So once again, we are faced with two 
architectures that embody extreme constraints, where the 
truth is probably a combination or compromise. 

It should also be noted that there are particular problems 
of this type that also require a sequential solution approach 
in Soar.  For example, although a Soar program can easily 
use one rule to operate on a whole set of objects 
simultaneously, it currently has no way to count the number 
of objects in that set.  For the task of counting the number of 
elements in a set, both ACT-R and Soar demand 
sequentially implemented solutions. 

Conclusion 
We have examined four classes of modeling idioms that 
arise relatively directly from the combination of assumed 
constraints on cognitive processing imposed by the ACT-R 

and Soar cognitive architectures.  We hope that these 
examples provide a more detailed feeling to the modeling 
community about what some of the differences and 
similarities are between the architectures, particularly when 
it gets to the nitty-gritty of building detailed models.  From 
a cognitive modeling perspective, this is not just an exercise 
in examining computationally equivalent modeling 
approaches.  Each of the idioms implies measurable 
differences in the type of data the models will produce.  We 
have also observed that the constraints and bottlenecks 
assumed by each architecture tend be rather extreme and 
often opposed to each other.  We join others in 
recommending future work that includes finding more 
intermediate constraints on the cognitive architecture, which 
should translate to some variation in the common modeling 
idioms, and in turn to cognitive models that produce better 
matches to human data. 
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