
An Abstract Language for Cognitive Modeling

Randolph M. Jones (rjones@soartech.com)
Jacob A. Crossman (jcrossman@soartech.com)

Soar Technology, Inc. 3600 Green Ct. Suite 600
Ann Arbor, MI 48105

Christian Lebiere (clebiere@maad.com)

Bradley J. Best (bbest@maad.com)
Micro Analysis and Design, 4949 Pearl E. Circle, Suite 300

Boulder, CO 80301

Abstract

Cognitive architectures provide a definition of an abstract
machine to support programming of cognitive models and
intelligent systems. The point of the abstract machine is to
provide the most useful set of processes and representations
for developing such models, and the machine usually comes
hand in hand with a programming language. However, most
cognitive architectural languages are specified at a very low
level, which hinders model development in a number of ways.
We have developed an abstract machine and language that
generalizes across architectures, allowing modelers to move
up a level in their model specification. This serves a variety
of scientific and engineering goals.

Introduction
This paper describes our development of high-level
abstractions for modeling cognitive processes and intelligent
behavior, together with a formal computer language based
on these abstractions. The work is in the spirit of past
research into cognitive architectures, which provide
functional components and data representations for the
purpose of modeling human behavior. Each cognitive
architecture defines an abstract machine together with a
language for programming that machine. However, until
recently, there has been little effort to identify the
commonalities across existing cognitive architectures,
which would also make it more clear which architectural
differences are important from a theoretical point of view.

Our efforts to produce an abstract language for cognitive
modeling have shown that there are important fundamental
and theoretical differences between the most prominent
cognitive architectures (Crossman et. al., 2004; Jones &
Wray, in press). However, much of the work involved in
building specific cognitive models is the same no matter
which architecture one is using. This is particularly true for
defining high-level knowledge representations, building a
structured task analysis, and implementing this with a
conventional sense-retrieve-act decision cycle. One goal of
this research is to make it feasible for common modeling
activities to be accomplished within a common framework
and formal language. This should make it easier to build
and maintain models, facilitate exploration of model
variations within a particular cognitive architecture, and
enable comparing models across architectures.

To this end, we are developing an abstract formal

cognitive modeling programming language that generalizes
the common structures and processes found in existing
cognitive architectures. Our approach combines a high-
level overview and analysis of a number of architectures for
cognition and intelligent agents with a fine-grained analysis
of two of the most prominent cognitive architectures. Our
current work involves developing a language and compilers
to specify high-level cognitive models and translate them
into executable ACT-R (Anderson, 1998) and Soar (Newell,
1990; Wray & Jones, 2005) models. This has required us to
be extremely careful about managing the theoretical
differences and assumptions behind ACT-R and Soar, and
generalizing those into a useful abstract framework that can
be represented in a formal, high-level language.

Together with the development of the language and
compilers, we are working with initial modeling examples
to help refine and evaluate the language. This report
presents an overview of some of the interesting language
features we have identified so far, together with illustrative
examples and initial evaluations of the language design.

Abstract Machines and Languages
A key concept in computer science is to define appropriate
levels of abstraction for different types of tasks. This
approach has led to the notion of an abstract machine; an
interpreter that provides a fixed set of functional
components, together with a “machine” language that
operates on those components. The cognitive science field
has also produced work in this spirit, leading to the
development of cognitive architectures. A cognitive
architecture can be considered as a virtual machine that
provides functional components for the essential elements
of the human mind

Cognitive architectures have added to our understanding
of mental processes by providing formal abstractions of
those processes. Current architectures, however, have
necessarily provided low-level abstractions, meaning that
their associated programming languages are also low-level,
akin to assembly languages for intelligent systems. Such
languages require undue effort on the part of model builders
and make it difficult to develop high-level solutions that are
not mired in details. In some respects, one of the strengths
of cognitive modeling is that it forces the modeler to be
precise in developing a theory. However, in many instances

it would be more useful to work at higher levels of
abstraction when developing individual cognitive models.

Research Goals
The goals for our research can be divided into two broad
categories. On one hand, developing higher level
abstractions will provide scientific advantages for advancing
our understanding of human thinking. On the other hand,
the effort should also improve the efficiency and correctness
of engineering applied human behavior models.

Scientific Goals
Our scientific goals focus on making it easier to develop,
understand, reuse, and compare cognitive models and
components of those models:
• Creating a clean distinction between the parts of a model

that depend on the unique aspects of the architecture and
those that do not.

• Eliminating or reducing the number of possible different
ways to create a particular model, thereby reducing
potential confounding factors when comparing models.

• Fostering reuse across cognitive models, especially in
terms of high-level task knowledge.

• Allowing straightforward comparisons of the same model
within two different cognitive architectures.

• Encouraging exploration and fine-tuning of architectures
while holding a model’s high-level abstractions constant.

Engineering Goals
Our engineering goals aim primarily at controlling the costs
of development, maintenance, and deployment of cognitive
models and applied knowledge-intensive agent systems:
• Fostering reuse, thereby reducing development expense.
• Decreasing number of lines of code and programming

constructs necessary to implement a complete model.
• Improving compile-time and run-time error checking

during model implementation.
• Decreasing software maintenance costs by allowing code

updates at higher levels of abstraction and incorporating
software engineering constructs.

• Allowing model specification only to the level of detail
necessary for a particular application or research effort.

• Informing the creation of abstract-level design tools and
integrated development environments.

Overview of Cognitive Architectures
To accomplish these goals, we are focusing on three
elements: a language for specifying agent behavior at a high
level with reusable components (HLSR), a mapping
between this language and the underlying architectures (a
compiler), and a methodology for developing agents.

Important constraints on HLSR’s design arise from the
fact that sophisticated cognitive models and agents must
incorporate significant amounts of knowledge. There are
many good engineering platforms for building software
systems, including “lightweight” agent systems. However,
these platforms are clearly not suitable for implementing
agents that incorporate large amounts of knowledge, that
must maintain sophisticated internal representations of

situational awareness, and that must manage the
maintenance and pursuit of complex sets of interacting
goals. In contrast, cognitive architectures have traditionally
focused on exactly such capabilities.

In addition, cognitive architectures perform in a least
commitment (Weld 1994) manner, making context-sensitive
decisions about behavior and resource allocations, and
flexibly adapting those decisions in the face of a changing
environment or assumptions. Least commitment
mechanisms, in which control decisions are made at every
decision opportunity, contrasts with traditional control logic,
in which control decisions are fixed when the program is
designed and compiled. Least commitment is a
fundamental requirement for autonomous, flexible,
adaptable behavior. Cognitive architectures also generally
provide explicit mechanisms for relating parallel processing
(for example, at the level of memory retrieval, pattern
matching, or analysis of courses of action) to serial
processing (where behavior systems must ultimately
generate a serial set of commitments to action).

As platforms for knowledge-intensive models, cognitive
architectures also support the encoding of knowledge into
executable models. Many architectures focus on symbolic
representations of this knowledge while others also support
subsymbolic processing (e.g., the retrieval process in ACT-
R’s associative network). However, for HLSR, we are
targeting a symbolic level of abstraction, leaving
“subsymbolic” processes to inform the implementation
level. Symbolic encoding of knowledge has a natural
relationship to symbolic programming languages, which is
ideal for systems that lead the “double life” of serving as
human behavior models and application programs.

Knowledge in cognitive architectures is encoded
associatively, as opposed to procedurally or functionally, as
is standard practice in software engineering. Each
architecture includes a mechanism for associative retrieval
of potential courses of action, and a conflict resolution
mechanism for choosing between the candidates. We argue
(and research into cognitive architectures seems to confirm)
that associatively represented knowledge is a fundamental
key to capturing mixed-initiative commitment to action,
which is expected of artifacts with human-like intelligence.

A final reason to focus on cognitive architectures is that
they generally provide at least some account of all aspects
of intelligent behavior, and provide explicit structures and
processes for modeling them. In particular, this breadth
includes learning and long-term adaptation to new
environments, which will be a key part of future
development of sophisticated human behavior models.
Much additional research is needed before learning is used
in robustly engineered, knowledge-intensive agents.
However, learning is critical and successful efforts to design
abstract frameworks for intelligent agents must address the
challenges of learning early in design.

HLSR Language Constructs
The selection of constructs and execution semantics for
HLSR has been driven by several factors. Initially, we
identified a set of core elements that appear to be relatively
similar across cognitive architectures, including:

• A declarative memory structure and a retrieval method
• Goals
• A procedural memory, particularly containing information

to achieve goals
• Mechanisms for timely reaction to external events.
• A decision process that iteratively selects goals to achieve

and actions to execute based on input and the contents of
procedural and declarative memory

The key guiding principle behind identifying these
components has been to find useful levels of abstraction,
specifically the abstraction of low-level programming and
architectural details. Appropriate abstractions will allow
HLSR to compile models into multiple architectures and
reduce the amount of code necessary. HLSR’s design has
also included an emphasis on the target architectures. The
language not only needs to produce code that will execute
on the target architectures, but should also take advantage of
the unique capabilities of each target architecture whenever
possible. Finally, we apply the principle of “least surprise”
in our design, selecting constructs and semantics that are
familiar and intuitive to cognitive modelers.

Following these constraints, we have developed a set of
high-level primitive language features together with a code
generation paradigm that exploits the strengths of the
individual target architectures. In this section we provide
three detailed examples of core language features in HLSR:
the relation, the transform, and the activation table.
Relations serve an abstraction of declarative memory
structures, including goals. Transforms serve as an
abstraction for procedural knowledge indexed by particular
goals (and possibly other relations). Activation tables serve
as an abstraction for pattern-based reaction that must cover
a range of possible response situations.

A relation, shown in Figure 1, is an n-ary relationship
between atomic symbols or other relations in declarative
memory. HLSR relations are defined by listing a name and
the attributes that the relation references, similar to Prolog
syntax. A relation’s declaration can optionally contain a
met condition; a predicate logic statement that indicates
when particular instantiations of the relation may exist in
declarative memory. A relation can be used in three ways.
First, it can be asserted as a fact; i.e., an assumed belief that
the relation holds for the given arguments. Second, it can
be asserted as a goal; i.e., a desire that the relation holds for
given arguments. Third, it can be used as a declarative-
memory query; i.e., a request to retrieve one or more known
instantiations of the relation.

An important design decision for queries concerns how
many instantiations a single query should attempt to
retrieve. Currently, HLSR queries always retrieve a single
instantiation, even if multiple instantiations exist in
declarative memory. HLSR requires retrieval of the “best”
single value that meets the conditions of the query. We
refer to this as the retrieve best semantic. Each architecture
may apply its own process (e.g. the subsymbolic activation
process in ACT-R), together with retrieval and similarity
semantics engineered into the model, to determine which
instantiation is “best” under a given set of conditions.

Because relations can be both asserted (assumptions) or
inferred from the met conditions (entailments), retrieval

strategies must include logic about whether to retrieve pre-
existing facts or to execute a more complex logical
computation. The HLSR compiler defines this process, the
retrieve v. compute decision, for each target architecture.

Figure 1: Example of HLSR relations

The transform, shown in Figure 2, is a conditionally
executed procedure. Transforms consist of a name,
attributes, trigger conditions, and a body. The attributes
behave like local variables for a transform and define the
transform’s interface to the rest of the model. Trigger
conditions are a set of queries combined by logical
conditions. These serve as a query, the instantiation of
which indicates that the transform should be executed. The
body is a list of queries and actions. Queries can be
specified in any order (or in parallel) but actions execute
serially, in the order specified. If a model requires parallel
execution of particular actions, this can be accomplished by
including each action in a separate transform, because
multiple transforms may execute in parallel (if the target
architecture supports this type of parallelism).

Figure 2: An example of a transform in HLSR

transform MoveDiskToPeg(d isa Disk,p isa Peg) (
 # Consider if a goal to put disk d on peg p
 consider-if (goal<DiskOnPeg>(d, p))
 body (DiskClearToMoveToPeg(d, p)
 DiskIsOnPeg(d, other-peg)
 consider-instead(
 DiskIsOnPeg(d, other-peg),
 new<DiskIsOnPeg>(d, p)))
)

If DiskCleartoMoveToPeg or DiskIsOnPeg
fails, an impasse is generated. A query
can retrieve a goal to resolve this impasse,
where “trans” binds to the transform instance
impasse<MoveDiskToPeg>(trans)

Relations without a met condition
relation Peg (name isa string)
relation Disk(name isa string, size isa integer)
Relations with a met condition
relation SmallerThan(a isa Disk, b isa Disk)
 (met (a.size < b.size))

relation TopDiskOnPeg(peg isa Peg,
 top-disk isa Disk) (
met (DiskOnPeg(top-disk, peg)
 forall DiskOnPeg(other-disk, peg)
 if(other-disk != top-disk)
 then(SmallerThan(top-disk, other-disk))))

(A) Defining Relations

“disk” is the top disk on “peg”
new<TopDiskOnPeg>(disk, peg)
A desire to make “disk” top on “peg”
new-goal<TopDiskOnPeg>(disk, peg)
Is “disk” the top disk on “peg?”
TopDiskOnPeg(disk, peg)

(B) Using Relations

All queries and actions must execute successfully for a

transform to complete execution successfully. If a
transform query fails to retrieve anything, the transform
suspends and automatically creates a subgoal. This is
similar to impasse-driven universal subgoaling in Soar or
the automatic subgoaling of means-ends analysis.

The activation table, shown in Figure 3, combines
concepts from truth tables and production rules as a
mechanism for specifying conditional actions. Our aim is
to provide an easy way to specify a number of conditional
actions that span many possible situations. An activation
table’s condition block defines a set of logical queries. The
subsequent action block lists labeled sets of actions where
the label determines when it is executed. Each character of
the label can be either T (true), F (false), or * (don’t care).
These characters are associated with the numbered labels in
the condition from left to right (i.e. condition 1 is associated
with the first character on the left, condition 2 with the
second, etc). If the pattern defined by the action label
matches the pattern formed by evaluating the logical
conditions in the condition block, the action statements for
that label execute (e.g., if conditions 1, 2, and 3 all evaluate
to logical true, the actions defined for TTT would execute).
The resulting action block resembles a truth table, making it
easier for a modeler to detect gaps and inconsistencies in
the action specification.

Figure 3: Example of an Activation Table

As with other queries in HLSR, the queries in an
activation table use the retrieve-best semantic. However,
depending on the goals of the model, transform actions may
be intended to apply to all retrievable instantiations of the
queries. For such cases, we must develop exhaustive-search
code-generation fragments for each target architecture.
Depending on the details of the architecture, it may search
for all the instantiations in serial or in parallel.

Summary
The language constructs described above demonstrate how
HLSR abstracts core elements of the underlying
architectures, making them easier to program by hiding low-
level details. HLSR does not dictate a particular goal-
management system or set of query-retrieval strategies,
leaving these implementations up to the code-generation
templates created for each target architecture. However, the
HLSR language does obviate the need for “information
meta-tagging” (such as goal-achieved flags) that often bogs
down the construction of individual cognitive models.

Compiling HLSR
The goal of compilation is to generate code compatible with
each target architecture (for now, Soar and ACT-R) that
executes within the constraints the HLSR language defines.
This goal is sufficient for logically correct execution. But
to be useful in practice, compilation should also:
• Generate code roughly equivalent to what a human

trained in modeling for that architecture would generate.
• Generate code that takes advantage of the unique

capabilities of the underlying architecture, such as
automated reason maintenance in Soar and sub-symbolic
activation in ACT-R.

In the longer term, our intention is to focus on optimizing
compilers that can generate code that both executes
efficiently and maximally exploits the architecture in ways
that would be time consuming or difficult to do by hand.

Our approach to compilation is to define architecture-
specific microtheories of compilation for HLSR constructs
and constraints. A microtheory is a description of the
structures, templates, and execution strategies that will be
used at the architectural level to execute each HLSR
construct. Without HLSR, developers have to define these
structures and strategies manually on a case by case basis
for each model and model sub-component, relying on
expertise to effectively apply them. Using HLSR, the
compiler does this for the modeler.

For each HLSR construct and constraint, there are often
several ways to execute it on the target architecture. For
example, goals in Soar can be implemented using either
Soar’s automated subgoaling system or by representing
goals as “beliefs” using Soar’s reason-maintenance system.
Advanced HLSR compilers may support more than one
microtheory for key constructs, allowing the HLSR
developer to select the most appropriate construct for their
model at compilation time. The modular design of
microtheories encourages such variability in model design.

Initially, we are implementing only one microtheory per
construct. To provide an illustrative example, we discuss
below the microtheories associated with queries of the
TopDiskOnPeg relation (defined above in Figure 1).

ACT-R Micro-theory for Relation Queries
HLSR’s model of declarative memory is a single pool of
relation instances (facts) that can be retrieved via queries.
This is similar to ACT-R’s declarative memory model,
which includes data chunks and a retrieval mechanism. The
challenge lies in mapping clusters of queries that share
variables, such as the TopDiskOnPeg query, to ACT-R
retrievals that function correctly and produce useful
behavior and data. ACT-R does not provide direct support
for the predicate logic used by queries. Typically, queries
must instead be mapped to a series of retrievals and tests,
with intermediate results and variables stored in ACT-R’s
goal buffer. The exact strategy used by an ACT-R modeler
for the retrieval often depends on the structure and quantity
of the chunks being queried and the behavior the modeler is
interested in, with alternatives including:
• Cognitive looping, which executes each retrieval serially,

checking the logical constraints after each retrieval. For

activation-table DecomposeMoveTower() (
 conditions (
 1:TowerOnPeg(tower, destination)
 2:DiskOnPeg(tower.base, destination)
 3:NextSmallestDisk(tower.base, next)
) actions (
 TTT:(new-goal<TowerOnPeg>
 new<Tower>(next),destination))
 TF*:(new-goal<TowerOnPeg>
 (tower.base, destination)))
)

retrievals that fail the logical constraints, the system must
backtrack to retrieve another instantiation.

• Reordering of conditions to reduce the number of
retrievals for which multiple chunks could be retrieved.
This requires knowledge of the cardinality and keys of
each type of chunk.

• Using ACT-R’s spreading activation and/or partial
matching to retrieve a chunk that is “close” to the right
value, and then just use this chunk.

• Restructuring declarative memory to store complex links
between structures explicitly when it is known that they
will be tested.

The current HLSR compiler implements a version of the
first strategy, though it should be possible to support the
first three by making minor changes to the HLSR language.
The fourth can be done explicitly by the HLSR developer by
redefining relations. The ACT-R microtheory for matching
queries implements the following algorithm:
• Relations with no met condition map to chunk types in

ACT-R, treating them like chunks (with some additional
slots added to aid processing of meta-information).

Figure 4: ACT-R retrieve, harvest, check pattern

• Nested HLSR queries (which have other queries in their
met condition) are incorporated recursively, flattening the
query into a set of fact retrievals and attribute tests.

• An ACT-R retrieval goal guides the multi-step retrieval
process for the flattened query.

• Fact retrievals and their related attribute tests convert to
ACT-R chunk retrievals.

• Logical conjunctions and shared variable storage convert
to “harvest productions”, which simultaneously test the
result of a query and store the result in a goal slot.

• HLSR generates additional productions to handle retrieval
failures. Failures can trigger other processing such as
backtracking to find additional retrievals, or can indicate
the end of a process.

The core of the ACT-R retrieval micro-theory is the
“retrieve-harvest-check” pattern. An example of this pattern
for the DiskOnPeg retrieval in the TopDiskOnPeg HLSR
production is shown in Figure 4. This is a common pattern
of productions found in ACT-R models, though it is often
optimized by hand. Its compiler implementation uses more
productions than an expert might use, but automates the
pattern’s implementation as a reusable package.

Soar Micro-theory for Relations
Compiling relations to Soar inverts the challenges of
compiling to ACT-R. Soar has no long term declarative
memory: all permanent knowledge is stored as productions.
It has a short term declarative memory (working memory),
structured as a graph accessed from a root node called the
state. Retrievals in Soar involve link following rather than a
general search over the entire pool of memory.
Furthermore, these retrievals retrieve all values that match a
pattern, not just the one best value as HLSR requires.

On the other hand, Soar productions support pattern
matching over a subgraph of memory providing a fairly
straightforward mapping of complex HLSR queries to Soar
productions. The structure of relations in HLSR map
naturally to Soar WMEs that share a common root symbol.

The essential aspects of the Soar microtheory for retrieval
are the fact storage structure, the retrieval mechanism, and
especially the strategy for retrieving one best value for each
query. The standard approach to structuring declarative
memory in Soar is to partition the state into sub-graphs
based on data type and the context in which it is used.
Processed sensory data and problem solving results are
asserted deliberately using operators, while additional facts
are inferred using truth-maintained elaboration productions.

To retrieve the best, the Soar microtheory must produce
partitions of memory that allow for general retrievals while
not generating excessive partial matches that would greatly
reduce production matching efficiency. Our approach to
facilitating general queries is to store all facts in a single
pool partitioned by object type. That is, to access a fact the
WME graph would be navigated from the root state through
the object pool and the fact typename to the fact instance
itself as seen in Figure 5. This limits partial matches to the
number of simultaneously asserted facts of a given type.

The retrieval process is a three part process basd on the
typical Soar modeling strategy described above.

;;; Goal to retrieve TopDiskOnPeg
(chunk Retrieve_TopDiskOnPeg_In_Context
 disk nil peg nil step intial
 processed nil supergoal nil)

;;; ACT-R productions doing the retrieve,
;;; harvest and handle error pattern
(p retrieve-disk-on-peg-1R
 =goal>
 isa Retrieve_TopDiskOnPeg_In_X_Context
 peg =peg
 step initial
==>
 +retrieval>
 isa DiskOnPeg
 peg =peg
 =goal>
 step 1R) ;;; retrieval
(p harvest-disk-on-peg-1S
 =goal>
 isa Retrieve_TopDiskOnPeg_In_X_Context
 peg =peg
 step 1R
 =retrieval>
 isa DiskOnPeg
 peg =peg ;;; make sure it succeeded
 disk =disk ;;; harvest
==>
 =retrieval>
 processed =goal ;;; may rtv another
 =goal>
 disk =disk ;;; store result
 step 1S) ;;; Success for step
(p harvest-disk-on-peg-1F
 =goal>
 isa Retrieve_TopDiskOnPeg_In_X_Context
 step 1R
 =retrieval>
 isa error
==>
 =goal>
 step 1F) ;;; Failed at step 1
;;;; More productions

Figure 5: Soar structure and retrieval production

• Directly asserted facts (those stored in declarative
memory via an action) are kept in the type-partitioned
memory pools until they are explicitly retracted.

• Facts that can be inferred using HLSR relation met
conditions are compiled into elaboration productions that
assert the given relation if the met condition matches.
These productions are constrained to fire only when
needed (when an action using the assertions is executed).
Figure 5, shows examples of these elaborations. Multiple
values may be asserted for the same relation.

• Retrieval occurs when the retrieved values are needed to
execute an action. Given an action and all of the facts
asserted in the object pool, the compiler outputs
productions to propose an operator for each combination
of facts necessary to bind the variables used in the action.
At this point, Soar’s operator selection process will select
only one operator for execution, the other operators are
retracted, and Soar is left with one set of retrieved values
to use (meeting HLSR’s “retrieve one best” constraint).

Soar’s retrieval process selects the one “best” value for a
query randomly. It is possible to bias the selection of
operators using preferences, including probabilistic. To do

this effectively would require either the definition of a more
sophisticated retrieval strategy (e.g., ACT-R’s subsymbolic
activation mechanism) or the ability to add preference
knowledge through HLSR. We are currently exploring each
of these possibilities.

Conclusions
HLSR provides an abstract architecture and language for
developing cognitive models and intelligent systems. Its
design has combined a top-down approach (analyzing
similarities across a variety of cognitive and agent
architectures) and a bottom-up approach (working in detail
to provide a language that can compile to both ACT-R and
Soar models). The language’s design has already allowed
us to characterize a number of subtle differences between
ACT-R and Soar, such as their approaches to retrieval and
exhaustive matching. But these results are in the context of
a set of uniform abstract processes and representations that
the architectures both share. Future work will produce more
detailed comparisons of the architectures, as well as
demonstrations of usability and reusability to accomplish
the scientific and engineering goals of using an abstract
machine and language as a basis for cognitive modeling.

Acknowledgements
This work is being funded by the Office of Naval Research
under contract N00014-05-C-0245.

References
Anderson, J. and C. Lebiere, (1998) The Atomic

Components of Thought. Lawrence Erlbaum.
Crossman, J., R.E. Wray, R.M. Jones, and C. Lebiere.

(2004) A High Level Symbolic Representation for
Behavior Modeling. In Behavioral Representation in
Modeling and Simulation Conference. Arlington, VA.

Jones, R. M., & Wray, R. E. (in press). Comparative
analysis of frameworks for knowledge-intensive agents.
AI Magazine.

Morgan, G. P., Cohen, M. A., Haynes, S. R., & Ritter, F. E.
(2005). Increasing efficiency of the development of user
models. In Proceedings of the IEEE System Information
and Engineering Design Symposium.

Newell, A. 1990. Unified theories of cognition. Cambridge,
MA: Harvard University Press.

St. Amant, R., Freed, A. R., & Ritter, F. E. (2005).
“Specifying ACT-R models of user interaction with a
GOMS language.” Cognitive Systems Research, 6(1), 71-
88.

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In Human
Factors in Computing Systems: CHI 2003 Conference
Proceedings (pp. 265-272). New York: ACM Press.

Weld, D. (1994). “An Introduction to Least Commitment
Planning.” In AI Magazine. 15(4), 27-61

Wray, R. E., & Jones, R. M. (2005). Considering Soar as an
agent architecture. In R. Sun (Ed.), Cognition and multi-
agent interaction: From cognitive modeling to social
simulation, 53–78. Cambridge, UK: Cambridge
University Press.

Create pool to store objects, but index
by type to reduce partial match costs
^top-state
 ^objects ;# fact pool
 ^typename
 ^object ;# a fact instance
 ^paramname
 ... ;# params and internal tags

Compute smallerthan when we need to
find the top disk on a peg
sp {topdiskonpeg*retrieve*smallerthan
 (state <s> ^retrieveal-request <rqs>)
 (<rqs> ^request <rq>)
 (<rq> ^type TopDiskOnPeg)
-->
 (<rqs> ^request <new-request>)
 (<new-request> ^type SmallerThan)}

One retrieval production (peg is known)
sp {retrieve*topdiskonpeg*peg*no-topdisk
 (state <s> ^retrieval-request <rqs>
 ^objects <objs>)
 (<rqs> ^request <rq>)
 (<rq> ^type TopDiskOnPeg
 ^params <param>)
 (<param> ^peg <peg>)
 (<objs> ^object <st-1>)
 (<st-1> ^type DiskOnPeg
 ^disk <top-disk> ^peg <peg>)
 -{ (<objs> ^object <st-2>)
 (<st-2> ^type DiskOnPeg
 ^disk { <other> <> <top-disk> }
 ^peg <peg>)
 (<objs> ^object <st-3>)
 -{ (<st-3> ^type SmallerThan
 ^a <top-disk> ^b <other>) } }
-->
 (<objs> ^object <new-object>)
 (<new-object> ^type TopDiskOnPeg
 ^peg <peg>
 ^top-disk <top-disk>)}

