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Abstract

We introduce an autonomic hardware architecture for self-
adapting sustainable performance. This architecture utilizes
a two-tiered approach to synergize lower-level organic com-
puting elements and upper-level cognitive supervisory ele-
ments. The Cognitive Layer monitors the organic computing
elements with respect to mission performance specifications.
The Cognitive Layer also leverages the organic computing el-
ements’ reporting capabilities to assist in fault isolation, res-
olution, and avoidance of un-desirable emergent behaviors at
the system level. The Organic Layer resides beneath it and is
composed of Field Programmable Gate Arrays (FPGAs) con-
taining Functional and Autonomic Elements . Each FPGA is
imparted with an independent capability to self-monitor and
self-repair. This architecture will be capable of maintaining
mission requirements through monitoring and managing the
functionality of independently sustainable FPGAs.

Introduction
Current high-performance processing systems are increas-
ingly complex. They frequently consist of heterogeneous
processor subsystems that depend on one another in nontriv-
ial ways, where each subsystem is itself a multi-component
system with diverse capabilities. The organization of these
subsystems is typically static, determined with great care at
design time and optimized for a particular mode of opera-
tion. This design strategy is appropriate for systems that will
be used in relatively static circumstances and that will be
accessible for repair when their components fail. However,
systems that will be used in dynamic situations, or those that
will be impractical or impossible to reach for repairs once
deployed, present a different set of challenges. In these sys-
tems, the failure of a single component or a change in the
desired mode of operation may result in large-scale ineffi-
ciency or even complete system failure.

Electronic systems operating in dynamic environments,
therefore, require an increased capability for fault toler-
ance and self-adaptation, especially as their system com-
plexities and interdependencies continue to increase. The
realization of systems that are capable of exhibiting such
adaptive behaviors constitutes the vision sought by organic
computing (OC) (Schmeck 2005). The organic computing
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paradigm places high value on the so-called self-x proper-
ties, which include self-configuration, self-reorganization,
and self-healing (Waldschmidt 2004), (Lipsa et al. 2005).
These objectives must be maintained in an autonomous fash-
ion, yet sufficiently constrained to avoid undesirable emer-
gent behaviors.

In this paper, we introduce the design of Soar-Longevity,
a two-layered computing system architecture integrating au-
tonomous, organic hardware elements at the chip level (with
all the implied self-x properties) with supervisory software
to monitor, diagnose, and reconfigure components at the
subsystem and system levels.

Previous Work
The field of organic computing is beginning to bear fruit
at the level of single chips. A widely known generic OC
platform called the Autonomous System-on-a-Chip (ASoC)
architecture was proposed in (Lipsa et al. 2005). The
ASoC platform consists of two layers: the Functional Layer
and the Autonomic Layer. The Autonomic Layer con-
tains autonomic elements (AEs) that are responsible for
correct operation of the corresponding functional elements
(FEs) present on the Functional Layer. Each FE (e.g.,
CPU, RAM, Network Interface) has a counterpart Mon-
itor/Evaluator/Actuator component within the Autonomic
Layer.

The Computer Architecture Laboratory (CAL) at the Uni-
versity of Central Florida (UCF) has been working through-
out the last five years on developing autonomous architec-
tures based on FPGA technology. CAL has been success-
ful in developing and delivering several sustainable com-
puting platforms such as the Competitive Runtime Recon-
figuration (CRR) architecture for NASA, an autonomous
self-repair approach for SRAM-based FPGAs where mul-
tiple phases of the fault handling process including Detec-
tion, Isolation, Diagnosis, and Recovery are integrated into
a single cohesive process (DeMara and Zhang 2005). In
2006, CAL demonstrated a low-overhead, model-free ap-
proach to fault-recovery based on outlier identification of
normal throughput and combinatorial group testing theory
(Sharma and DeMara 2006). In 2007, CAL demonstrated a
multi-layer FPGA framework supporting autonomous run-
time partial reconfiguration and dynamic bitstream construc-
tion (Tan and DeMara 2007). These research results provide



Figure 1: Conceptual Architecture

novel approaches to sustaining performance in-situ, in real-
time, and without requiring additional test vectors beyond
the normal system inputs.

Concept
In this paper we introduce the Soar-Longevity architecture,
which makes use of self-monitoring and self-healing ap-
proaches for SRAM-based FPGA chips (DeMara and Zhang
2005), which constitute the Organic Layer, while providing
an additional Cognitive Layer for higher-level fault detec-
tion, mission-specific optimization, and adaptation to chang-
ing mission priorities. A conceptual architecture of the Soar-
Longevity concept is shown in Figure 1.

Components at the Organic Layer are organized into over-
lapping functional groups called organic units, implemented
on FPGA chips, each of which bears responsibility for a
particular set of mission-relevant tasks. Each organic unit
consists of three redundant functional elements (FE) and
one autonomous element (AE). Within the Cognitive Layer,
cognitive-agent-based monitoring and diagnostic processes
continually track the behavior of these organic units and de-
termine whether their behavior characteristics fall within ex-
pected profiles.

The Cognitive Layer consists of four components: Pro-
cess Model, Operation Manager (OM), Performance Moni-
tor (PM), and a Cognitive Layer Stub (CLS) which provides
a connection to the Organic Layer. The Cognitive Layer in-
teracts with the Organic Layer by:

• receiving status reports from the Organic Layer (CLS)

• identifying unit-level failures or anomalies based on in-
coming status reports (PM)

• Determining whether output conforms to expected pro-
files (PM)

• when tolerances are exceeded or mission priorities
change, reasoning about what to do next (OM)

• delivering reconfiguration bitstreams to implement
changes (CLS)

Realization of the Soar-Longevity architecture extends
the state of the art along two significant dimensions. First, it
increases the ability of organic computing systems to mon-
itor system capability during execution by incorporating a

Figure 2: Triple-Modular Redundancy(TMR)

cognitive understanding of how the performance of indi-
vidual components can combine to generate overall system
performance. It also improves organic computing systems’
ability to manage and configure system resources by allow-
ing system-level reorganization in response to component-
level hardware failures.

Organic Layer Design
The Organic Layer combines the functional elements of the
hardware system with organic components to provide self-x
properties for the system. More specifically, functional el-
ements within this layer have the ability to self-configure,
self-reorganize, and self-heal in response to organically de-
tected errors. In our approach, the Organic Layer consists
of a network of organic units. Each unit represents a log-
ical thread of functionality implemented by three parallel
functional elements (FE) and includes an autonomic element
(AE) that manages its self-x properties.

The three FE units are arranged in a parallel configuration
as illustrated in Figure 2, with a voter element positioned at
the output of each element to identify discrepancies. When
the hardware initially comes online, one of the three FEs be-
gins offline as a cold-spare. Once the first discrepancy is
detected by the voter, the TMR mode (Zhang et al. 2006)
does not activate until a discrepancy is detected between the
two online FEs. The output of each FE - all identical if each
is functioning properly - is sent to a voter element and com-
pared. If two FEs produce the same output while the third FE
produces a different output, the majority output is chosen as
the output of the unit, while the differing FE is identified as
the outlier, indicating that it likely has a fault. The AE tracks
the output of the polling unit to detect when an FE becomes
faulty. Faulty AEs are brought offline and reconfigured us-
ing the Organic Embedded System technique (Zhang et al.
2007).

Cognitive Layer Design
The purpose of the Cognitive Layer is to augment the self-x
properties of the Organic Layer by maintaining a cognitive-
level understanding of the operating system and the mission
requirements of that system, and using that understanding
to diagnose and resolve run-time errors that cannot be ad-
dressed at the organic level. This level of capability requires:
• a computational representation of mission requirements

and available mitigation strategies
• a computational representation of the Organic Layer ar-

chitecture and functionality of each organic unit



Figure 3: Conceptual Architecture of Cognitive Layer

• real-time status of Organic Layer activity, including repair
status, error detection and unit output

• expert system capable of reasoning over all of the infor-
mation above, identifying system-level errors, determin-
ing and implementing appropriate courses of action

Process Model
To reason about the allocation of computational resources
to mission priorities, the Cognitive Layer must have a de-
scription of the capabilities and performance characteristics
of the autonomous elements, a description of the require-
ments and priorities within the current mission context, and
an understanding of what capabilities can be used to satisfy
which requirements. The representation of mission require-
ments can be multi-faceted, as described in the use case, be-
cause there are several preferences for system performance.
Some pairs of preferences intrinsically conflict (e.g., qual-
ity and speed often must be balanced against each other),
while other preferences may be relevant only under certain
circumstances or may have intricate interdependencies (try
to do A; failing that, try to do both B and C, but don’t bother
doing just one).

In our architecture, the Process Model describes the types
of data required for each task, the algorithmic or computa-
tional primitives carried out by each functional element and
their effects on data streams, and the performance character-
istics that are pertinent to mission requirements.

Residing in the architecture’s Cognitive Layer, the Pro-
cess Model specifies the desired mission requirements and
expected operational performance of the hardware system.
This specification exists in a computational format, which
allows the other elements in the Cognitive Layer to reason
about the data and compare it to the real-time performance
and outputs of the system. When discrepancies exist be-
tween actual performance (from the Organic Layer via the

AES and FES and compiled by the Performance Monitor)
and desired/required performance, the Operation Manager
generates a refactoring strategy that can be implemented us-
ing the reconfigurable elements of the Organic Layer.

The Process Model is an external data source that feeds
into the Performance Monitor and Operation Manager el-
ements. Specifying the data using an external source will
allow for data-driven execution of the Cognitive Layer. In
addition, the proposed architecture will allow for Process
Model contents to be externally specified by the user, both in
advance of the system’s deployment and while it is running.
In the latter scenario, the data-driven nature of the Cognitive
Layer will allow the user to modify existing mission require-
ments or other specifications in the Process Model without
requiring other changes or reconfiguration within the other
elements.

The Process Model defines the following information:
• type definitions of the data at the chip level and the asso-

ciated properties that can be asserted about those types
• transform classes that define all valid data operations

within the system and the associated performance prop-
erties, valid transformation properties, and error classifi-
cations

• system performance thresholds, which define require-
ments for each transform class in terms of metrics such
as speed, error probability, and resource usage

• physical configuration of system, which specifies the net-
work of configured FPGA chips (and their interconnec-
tions) in the Organic Layer when the system is first
brought online (and before any reconfiguration)

• system reconfiguration options that describe what trans-
form(s) can be implemented within each FPGA unit and
the physical I/O requirements (e.g., pin locations) for con-
figuring each transform

• mission requirements and priorities

Performance Monitor
The purpose of the Performance Monitor (PM) is to accept
status information from the Organic Layer. That information
is then compiled to make cognitive-level assertions about the
state of each organic unit.

• Functional Element Health - assertions about the health
and performance of the functional system using in-puts
coming directly from elements in the Organic Layer-
the functional elements (FE) that collectively execute the
functionality of the system and the autonomic elements
(AE) that induce and oversee the autonomous repair of
individual functional elements

• Organic Unit Output - in units defined in the Process
Model, examined to identify patterns that may represent
erroneous operation (e.g., due to bad inputs/parameters)

• Organic Unit State - the state of each organic unit in the
Organic Layer, indicating whether the unit is online, of-
fline as a working spare, or a previously online chip that
has been pulled offline for performance reasons (possibly
at the behest of the Cognitive Layer)



• Organic Unit Performance - in metrics defined in the Pro-
cess Model, indicating whether the Cognitive Layer needs
to intervene via reconfiguration if a unit is not performing
within specified parameters

Operation Manager

The Operation Manager (OM) element within the Cognitive
Layer is responsible for determining refactoring instructions
within the Organic Layer, based on state assertions from the
Performance Monitor and requirements specifications from
the Process Model.

When Not to Refactor The primary advantage of an or-
ganic computing system is its ability to maintain self-x prop-
erties, including the ability to self-reconfigure/self-heal in
response to detected errors. In adding a Cognitive Layer on
top of such a system to monitor its functionality, the goal
should not be to replace or undo this functionality, rather to
take advantage of it when possible and to augment it. The
Cognitive Layer in the Soar-Longevity design exists to iden-
tify and recover from system errors that would be incurable
in a strictly organic implementation and to choose recovery
strategies that are consistent with known mission require-
ments and priorities.

However, in error states where the Organic Layer is
capable of self-reconfiguration, especially when that re-
configuration can fully restore the system’s optimal func-
tionality and performance, it is the responsibility of the
Cognitive Layer to stay out of the way. This keeps Cog-
nitive Layer outside the system’s critical path until func-
tional/performance errors are detected that require its inter-
vention.

Detection of Functional Errors The Cognitive Layer de-
tects functional errors in the Organic Layer by comparing
output-pattern assertions from a specific organic unit (pro-
vided by the Performance Monitor) to ’known-bad’ output
pattern types specified in the Process Model. If an output
from the Organic Layer is identified by the Performance
Monitor to be a type that is known-bad, then the organic
unit responsible for that output has incurred a functional er-
ror and must be reconfigured.

Note that errors of this type cannot always be detected
within a completely organic system. Such systems detect
errors by comparing parallel outputs of functional elements.
Errors are detected when a discrepancy is identified; how-
ever, the actual contents of the output are not considered to
determine the nature or source of the error.

It may also be the case that the error is not caused by a
hardware failure but from external circumstances or user er-
ror. Detection of these errors is made possible by defining
these ’known-bad’ output types within the Process Model
and then detecting them. For instance, consider a situation
where a functional unit within the Organic Layer is respon-
sible for encoding a satellite camera feed into a digital signal
for encryption and transmission. The user might encode the
case where the camera is staring into dead space as an error;
however, the fact that the camera is pointed in the wrong
direction is likely not due to a hardware malfunction.

Detection of Performance Errors In addition to func-
tional errors, it is also beneficial for the Cognitive Layer
to have the ability to detect and recover from performance
errors. Hardware failures within a system can lead to de-
graded performance, preventing the system from achieving
mission requirements as specified. This is a multi-step pro-
cess. First, a physical fault causes a functional error. The de-
tection of that functional error, using spatial redundancy (du-
plicate or triplicate computed outputs) precipitates rollback
so that the operation can be repeated. Rollback, instruction
reissue, and any resulting FPGA reconfiguration all require
time yet do not necessarily contribute to the throughput of
the application processing. Eventually, either organically
or through the Cognitive Layer, some recovery hopefully
is found so that functionality becomes at least partially re-
stored. However, viewed externally as a black box, the per-
formance throughput appears to drop when measured over a
larger window during recovery.

Performance failures are addressed just like functional er-
rors. Performance information from each organic unit is
passed to the Operation Manager via the Performance Mon-
itor, and compared to mission requirements specified in the
Process Model. When an organic unit is performing a func-
tion with performance metrics that do not meet thresholds in
the requirements specification, the Operation Manager rec-
ognizes the problem and determines a reconfiguration strat-
egy.

Performance errors cannot be detected or corrected or-
ganically, so this responsibility lies solely on the Cognitive
Layer and the Operation Manager. Because performance
threshold values are externally specified, it is impossible for
a purely organic hardware system to detect when its compo-
nents are exceeding those thresholds.

Chip-level Refactoring Once a functional or performance
error is identified, it is the responsibility of the Operation
Manager to select or construct a reconfiguration strategy
that allows the system to recover from the error. Without
a gate-level representation of the Organic Layer, it is not
possible for the Operation Manager to actually diagnose the
actual failure that has occurred. Instead, it recognizes the
symptoms of that failure and derives strategies to eliminate
or alleviate those symptoms. These strategies are then im-
plemented in the Organic Layer through reconfiguration of
FPGA chips.

The Operation Manager has three main options, or refac-
toring classes, when deciding how to reconfigure FPGA
chips in the Organic Layer:

1. implement the same function using the same algorithm

2. implement the same function using a different algorithm

3. perform a different function

The Operation Manager will prioritize the above options
in order shown above. If feasible, the best option to recover
from a chip-level is to reconfigure the chip so that it returns
to its original state (option 1). This will be the first response
of the Operation Manager when such an error is detected. It
will then observe the response of the Organic Layer (via the
Performance Monitor) to find out whether that reconfigura-



tion was successful. Depending on the number of available
alternate configurations for the chip, the Operation Manager
may first attempt option 1 several times before reverting to a
suboptimal strategy.

Option 2 calls for the Operation Manager to reconfigure a
chip in such a way that it performs the same function but us-
ing a modified algorithm or hardware implementation. This
modification may be as simple as reconfiguring an adder
chip to perform a+(b+ c) instead of b+(a+ c), or perhaps
something far more complicated. Either way, the Operation
Manager selects or constructs substitute functions using the
transforms specification in the Process Model. The Opera-
tion Manager uses the specification to construct, using the
available transforms, a replacement or composite transform
that has the same input/output characteristics as the function
performed by the faulty chip.

The final alternative for the Operation Manager is option
3, reconfiguring a chip to perform a different function. This
is the least desirable alternative, since it implies a recovery
from a significant hardware failure that likely requires reas-
signment of chip resources to regain functionality.

System-level Refactoring In response to significant hard-
ware failures, it may be necessary for the Operation Man-
ager to devise a reconfiguration strategy that affects not only
the individual chips but also the architecture that connects
them to form a functioning system. Such a strategy might
be employed to re-route system hardware around a disabled
chip, possibly to bring a cold spare online. Other drastic
strategies might involve reassigning roles to several chips in
the system and reconstructing its entire pipeline.

Proof-of-Concept Implementation
Figure 4 presents a proposed physical architecture for the
Soar-Longevity architecture. In the Organic Layer, or-
ganic units can be implemented in FPGAs housed on Xilinx
Virtex-4 FPGA development boards. Multiple organic units
can be configured on a single FPGA chip, while control and
status messages are sent to and from the Organic Layer using
simple dispatching circuitry configured on the chip.

The Cognitive Layer consists of four main software com-
ponents. The Process Model, which specifies mission re-
quirements, capabilities and interconnections within the Or-
ganic Layer, will be encoded using XML. The reasoning and
decision-making components of the Cognitive Layer - the
Performance Monitor and Operation Manager - can be im-
plemented using a cognitive architecture, such as Soar. The
resultant agent will issue refactoring instructions to, and re-
ceive information about the Cognitive Layer from, the Cog-
nitive Layer stub (CLS), implemented in Java, which com-
municates with the Organic Layer via a USB or parallel in-
terface. As illustrated, the refurbishment manager (RM),
autonomic and functional element stubs (AES/FES) are not
actually part of the Cognitive Layer, though as implemented
they will operate as threads within the CLS.

We developed a proof-of-concept prototype (see figure 5)
of the Soar-Longevity architecture that implements an edge-
detection algorithm for a pre-recorded video. The video is
run on a designated PC and fed through VGA-In port into an

Figure 4: Proposed Physical Architecture of Soar-Longevity

Figure 5: Edge Detection Use Case Architecture

FPGA that implements the edge-detection algorithm. The
edge-detected frames are output through VGA-Out port to
a standard monitor. In addition, the Organic Layer reports
status to the Cognitive Layer that resides on another PC via
the JTAG port connection, using a parallel cable. Detected
hardware errors are corrected through reconfiguration of the
FPGA, either organically or within the Cognitive Layer. Re-
configuration control signals from the Cognitive Layer are
sent through the parallel connection. Figure 5 shows the
system architecture for our use case. The normal flow of
the use case is to have a video stream running on one PC
that is connected to the FPGA board via VGA-In. The video
stream is processed through the edge-detection module and
the output is fed to another monitor via VGA-out.

Figure 6 shows a sample input satellite image and the
result of real-time processing of that image with the So-
bel edge detection algorithm on a Xilinx Virtex-4 FPGA,
which was implemented as an FE on the FPGA. Figure 6
(middle) depicts the impact of a stuck-at-one logic fault on
the input of a FPGA Lookup Table, which is identified and



Figure 6: Original and edge-detected images

resolved by the integrated Soar-Longevity system. When
the validated throughput of edge-detected pixels drops be-
low the specified performance requirement, the system is
reconfigured to achieve the recovery condition depicted in
Figure 6 (bottom). Thus, the throughput is restored using
organic identification of resource capabilities and cognitive
processes to reason about data path reconfiguration to main-
tain performance autonomously.

A video demonstration of our use case can be found at
(Stensrud et al. 2008).

Summary
Soar-Longevity utilizes a two-tiered approach to synergize
lower-level organic computing elements and upper-level
cognitive supervisory elements.

Soar Longevity’s Cognitive Layer augments the self-x
properties of the Organic Layer by maintaining a cognitive-
level understanding of the operating system and the mission
requirements of that system, and using that understanding
to diagnose and resolve run-time errors that cannot be ad-
dressed at the organic level. The Cognitive Layer monitors
the organic computing elements with respect to mission per-
formance specifications. It also leverages the organic com-
puting elements’ reporting capabilities to assist in fault iso-
lation, resolution, and avoidance of undesirable emergent
behaviors at the system level.

Soar-Longevity’s Organic Layer consists of a network of
organic units that are configured on the layer’s FPGA chips.
Each unit represents a logical thread of functionality imple-
mented by three parallel FEs and includes an AE that man-
ages its self-x properties. Hardware errors at the functional
element level are automatically detected and repaired inter-
nally by the organic unit while remaining online.

Funding for this research provided for the development

of a proof-of-concept implementation of the Soar-Longevity
architecture. For future work, we plan to implement and
evaluate the proposed Soar-Longevity architecture for an op-
erational use case and design a hardware implementation for
the architecture’s Cognitive Layer.1
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