
Characterizing the Performance of Applied Intelligent Agents in Soar

Randolph M. Jones
Steve Furtwangler

Mike van Lent
SoarTech

3600 Green Court, Suite 600
Ann Arbor, MI 48105

734-327-8000
rjones@soartech.com, furtwangler@soartech.com, vanlent@soartech.com

Keywords:

Applied intelligent agents, Soar, Cognitive architecture, Performance evaluation

ABSTRACT : There have been a few efforts to evaluate the robustness of performance of the Soar cognitive
architecture, with positive results. However, previous efforts have focused primarily on running the architecture with
agent models that are research systems, designed specifically for Soar performance evaluation, or otherwise limited
in capability. This paper reports an effort to take a number of applied intelligent agents “off the shelf” and use them
for a further evaluation of Soar. One primary goal is to see whether the performance results for research systems
also hold for applied agents. A second goal is to characterize Soar’s “practical” ability to run applied, knowledge-
rich agents with performance that will scale in number of agents, memory requirements, and execution time.

1. Introduction

We have a longstanding interest in the deployment of
knowledge-rich intelligent agent systems in operational
environments, particularly for DoD applications. For the
practical application of these agent systems, we require a
platform that is stable, robust, and operates within
acceptable memory and execution-time constraints. A
variety of efforts have characterized the Soar cognitive
architecture (Laird, Rosenbloom, & Newell, 1987;
Newell, 1990) and its ability to serve as the engine for
such intelligent agents. However, these studies have
largely focused on agent systems that are not applied or
deployed systems, and/or agent systems that were
developed primarily with the evaluation of the Soar
architecture in mind. For this study, we consider applied
agents to be interactive intelligent systems that were built
to generate a particular set of target behaviors for some
application, within the time and budget constraints of one
or more projects. In addition, we consider applied agents
in general (with some exceptions) to incorporate more
complexity in terms of knowledge and representation than
systems built specifically for research or performance
evaluation.

To respond to this situation, we have run a number of
additional performance tests on Soar, but using agent
systems that were developed for DoD projects in which
the evaluation of Soar was not a goal. These agent
systems were developed with the primary goal of meeting
application-specific reasoning and behavior generation
requirements. Efforts to optimize the efficiency of these
systems were of secondary emphasis, as long as the
systems met the project requirements. We have several
goals for this study:

• To determine whether the Soar performance
results demonstrated by other studies also carry
over to applied agent systems

• To determine whether the performance of
applied Soar agents will degrade over the course
of long-running tasks

• To determine how much these applied agents can
be optimized beyond what was required to
satisfy the project requirements and what these
additional optimizations consist of

• To determine the number of applied intelligent
agents that can be expected to run within
acceptable performance constraints on typical,
modern computer hardware

2. The Soar Cognitive Architecture

Soar is a software architecture for building computational
cognitive models and intelligent agent systems. Soar’s
main execution loop is called the decision cycle, which
consists of a fixed sequence of phases, shown in Figure 1.
In the input phase, input from an external environment
becomes represented as a set of interconnected symbols in
a short-term Working Memory. In the elaboration phase
all relevant long-term knowledge patterns trigger and fire
to elaborate the system’s representation of its current
situation and to propose operators (discrete, deliberate
actions) that are applicable in that situation. The
knowledge patterns are implemented as productions,
which are abstract patterns with conditions and actions,
somewhat akin to logical implication rules.

Multiple candidate operators are compared based on
preference knowledge, resulting in the selection of a
single operator for execution per decision cycle. The
selected operator executes by firing associated
productions that specify the actions to be performed. At

the end of the decision cycle, Soar generates
to enact actions in the external environment.

Figure 1. Phases of the Soar decision cycle.

In addition to being a software architecture in itself, Soar
represents the implementation of a cognitive theory of the
mind. In the typical application of the theory, Soar
decision cycles map onto the types of deliberate, mental
actions that occur in the human brain about once every 50
milliseconds (Newell, 1990). Although Soar developers
do not always adhere directly to the theoretical
constraints, the 50 msec/decision value is a target that is
often aimed for, if only in system design, if not in actual
implementation.

Figure 2. Soar 9 architecture, including reinforcement
learning, semantic memory, and episodic memory.

3. Previous Evaluations

Through a variety of research and experimentation efforts,
Soar has been demonstrated to operate
efficiently using traditional computer architecture
large knowledge bases, and to perform robustly when
running for long execution times. Doorenbos (1995)
demonstrated that the contemporary implementation of
Soar supported systems with over 100,000 productions i
long-term memory with no degradation in execution time.
More recently, Laird (2009) demonstrated that some fairly
simple agents (in terms of capability, but not in terms of
knowledge base size) could acquire over 17 million rules
and run for over 10 million decision cycles, again with no
degradation in performance. Laird also ran agents with
smaller numbers of rules for billions of decision cycles
again with no degradation in performance
Laird, Derbinsky, and Voigt (2011) have demonstrate
robust performance results with systems that acquire large
amounts of new knowledge using the
(semantic, and episodic) memory and learning modules
introduced in Version 9 of the Soar architecture (see
Figure 2). Our goal is to supplement these existing

Soar generates new outputs
external environment.

. Phases of the Soar decision cycle.

In addition to being a software architecture in itself, Soar
represents the implementation of a cognitive theory of the

he typical application of the theory, Soar
decision cycles map onto the types of deliberate, mental
actions that occur in the human brain about once every 50

. Although Soar developers
do not always adhere directly to the theoretical
constraints, the 50 msec/decision value is a target that is
often aimed for, if only in system design, if not in actual

r 9 architecture, including reinforcement

learning, semantic memory, and episodic memory.

Through a variety of research and experimentation efforts,
operate effectively and

using traditional computer architectures on
large knowledge bases, and to perform robustly when
running for long execution times. Doorenbos (1995)
demonstrated that the contemporary implementation of
Soar supported systems with over 100,000 productions in

term memory with no degradation in execution time.
(2009) demonstrated that some fairly

simple agents (in terms of capability, but not in terms of
knowledge base size) could acquire over 17 million rules

lion decision cycles, again with no
degradation in performance. Laird also ran agents with
smaller numbers of rules for billions of decision cycles,
again with no degradation in performance. Additionally,

) have demonstrated
robust performance results with systems that acquire large
amounts of new knowledge using the declarative

memory and learning modules
in Version 9 of the Soar architecture (see

). Our goal is to supplement these existing

studies with further studies of the performance of Soar
using applied agent systems that were built for capability
and not primarily to measure Soar’s robu
A significant question for our investigation is whether the
assumptions and performance results that held for the
research systems in the prior evaluations w
a variety of applied systems.
we have various anecdotal data. For example the TacAir
Soar system (Jones et al., 1999) in 1997 contained
approximately 8,000 productions and was able to perform
tactical air combat missions in real
continuous hours of operation.
the standard target for “real time” has been 50
milliseconds per decision cycle (Newell, 1990).
However, this paper will provide more concrete data on
the performance and robustness of such applied systems,
include cycles times that are at least an order of
magnitude faster that 50 milliseconds.

In the following section we describe each of the applied
agent systems examined in the current study.
presents a quantitative summary
these agents via two common measures
agents used in the study by Laird et al. (2011

Table 1. Comparison of agent complexity. Working
Memory (WM) size reflects the complexity of the agent’s
internal state representation. # of productions reflects the
complexity of the agent’s long-

Agent # of productions

Research Systems

Simple robot 22

Complex robot 530

Applied Systems

Comm 224

JTAC 274

RWA-CAS 2045

RWA-DAS 2045

RWA-SAR 2045

4. Applied Agents

For the purposes of this study, we selected a number of
existing applied Soar agents, developed by SoarTech
under a combination of internal and external projects.
One of the criteria for our selection of agents was that
they all operate within a single in
Thus, all of the selected agents have been integrated into
SoarTech’s SimJr software simulation environment
(Taylor & Ray, 2008), which provides low
simulation of entities and terrain for a variety of Do
relevant missions and applications. This is partly to

studies with further studies of the performance of Soar
using applied agent systems that were built for capability
and not primarily to measure Soar’s robustness or speed.
A significant question for our investigation is whether the

ance results that held for the
in the prior evaluations will also hold for

. For such applied systems,
e various anecdotal data. For example the TacAir-

Soar system (Jones et al., 1999) in 1997 contained
000 productions and was able to perform

tactical air combat missions in real time for up to 8
continuous hours of operation. For Soar work in general,
the standard target for “real time” has been 50
milliseconds per decision cycle (Newell, 1990).

will provide more concrete data on
ustness of such applied systems,
hat are at least an order of

magnitude faster that 50 milliseconds.

In the following section we describe each of the applied
agent systems examined in the current study. Table 1
presents a quantitative summary of the complexity of

via two common measures, as well as the
the study by Laird et al. (2011).

. Comparison of agent complexity. Working
size reflects the complexity of the agent’s

internal state representation. # of productions reflects the
-term knowledge.

of productions Avg WM size

Research Systems

~250

~3000

Applied Systems

~1600

~7600

~10500

~6500

~9000

For the purposes of this study, we selected a number of
existing applied Soar agents, developed by SoarTech
under a combination of internal and external projects.
One of the criteria for our selection of agents was that
they all operate within a single interactive environment.
Thus, all of the selected agents have been integrated into
SoarTech’s SimJr software simulation environment

), which provides low-cost
and terrain for a variety of DoD-

applications. This is partly to

reduce the chance that different execution environments
will play a significant role in our measurements.
Although we are also interested in assessing general
“practical” performance of these agents, we want to be
able to control the environment to some extent. That said,
each of the agents performs a different type of mission,
with different sensing, understanding, and reasoning
requirements. So we expect to see at least some variation
across agents, in at least some of the performance
measures. Following, we describe each of the agents used
in our experiments:

4.1 Wait Task Agent

The Wait Task agent can be considered the simplest Soar
agent that is actually a complete Soar program. It consist
of a single production that essentially “makes the
decision” to do nothing during each of Soar’s decision
cycles. Thus, this agent provides a comparison baseline
for the other agents, in terms of execution time and
memory resources. We ran the Wait Task agent for an
hour of real (wall clock) time, collecting statistics every
10 seconds.

4.2 Comm Agent

The Comm agent is one of a set of agents developed by
SoarTech to simulate the communications patterns
between various commanders in a Navy battle fleet. The
current command scenario focuses heavily on
communication and very little on any kind of
sophisticated reasoning. Thus, we primarily expect to see
memory and interaction effects for the Comm agent, as
opposed to intensive computation for decision making.
There are five Comm agents that send messages to each
other, but each has a similar performance profile. Thus,
our results include only the data from one of the five
agents (the one that engages in the most communication
during the command scenario). The Comm agent
includes 224 productions in its long-term memory. The
command scenario takes about 10 minutes of real time to
run, so we collected performance statistics every 10
seconds for 10 minutes.

4.3 JTAC Agent

The JTAC agent performs the Joint Terminal Air
Controller mission in simulations of Close Air Support
(CAS). CAS missions involve a spotter (usually on the
ground) who calls target information to an aircraft who
delivers weapons against the target. CAS missions
involve a high degree of communication and
coordination, as well as risk assessment, because the
targets are in close proximity to friendly forces. The
JTAC agent for this experiment identifies targets visually
(in simulation) and engages in a mission briefing,
correction, monitoring, and execution process with an
airborne weapons platform. In this scenario, the weapon

platform is a simulated rotary-wing aircraft (RWA,
described in the following section). The JTAC agent
includes 174 productions in its long-term memory. For
the experimentation scenario, we equipped the RWA
assets with an unrealistic number of missiles so that the
JTAC can continue running repeated CAS missions
against targets for a full hour. We ran the scenario for an
hour of real time, collecting performance statistics every
10 seconds.

4.4 RWA Agent

For the purposes of this experiment, the RWA agent
serves as three different agents. That is, we used a single
RWA agent model, consisting of 2045 productions in
long-term memory. However, we measured the agent’s
performance in three different mission areas and
scenarios. This allows us to characterize agent
performance that is more a function of its tasking than its
knowledge base.

In the RWA-CAS scenario, the RWA agent provides the
weapons support for the JTAC agent described above.
For our experiment, we placed an unrealistically large
number of CAS targets and gave the RWA vehicle an
unrealistically large number of simulated hellfire missiles.
This allowed us to run the scenario with fairly continuous
reasoning and activity for an hour of real time, collecting
performance statistics every 10 seconds.

In the RWA-DAS scenario, the same RWA agent
performs a Direct Air Strike mission against a number of
targets. This mission involves the coordination of four
different aircraft (each controlled by an instance of the
RWA agent code) to plan attack routes, follow attack
routes, then coordinate attacks against the targets. We
again ran the scenario for an hour of real time, collecting
performance statistics every 10 seconds. In this scenario,
there is one Lead aircraft and three support aircraft. The
performance profiles of the support aircraft are similar but
somewhat less demanding than for the Lead aircraft
(because the Lead does most of the decision making).
Thus, in this paper we are only reporting the statistics
collected for the Lead RWA agent.

In the RWA-SAR scenario, the same RWA agent
performs a search-and-rescue mission, which mostly
consists of a systematic search of an area and reporting of
observations. An important feature that distinguishes this
scenario from the other RWA scenarios is that the agent is
configured to report a large amount of its internal
reasoning to an external system (called VISTA) that
provides graphical visualization of the agent’s “mental
state” (Taylor et al., 2002). This imposes additional
performance, memory, and interaction requirements on
the agent. Once again, we ran the RWA-SAR scenario
for an hour of real time, collecting performance statistics
every 10 seconds. For each of the RWA scenarios, we

ran experiments using the original RWA code base, as
well as experiments after a set of fairly routine
optimizations to the code (see the section below on
Opportunities for Improvement). For the initial
performance results we show only the optimized RWA
performance. Performance of the RWA agent before
optimization had the same characteristic shape with
slightly worse performance.

5. Experimental Results

The following sections present the primary results and
analysis of the collection of experiments described above.
The goals of our analysis are to determine how the
memory and computational performance of the agents
scales over time, as well as assess the “practical”
scalability of applied agent systems. We will describe
what we mean by “practical” in the relevant subsection.1

5.1 Scalability of Memory Requirements

One of the results demonstrated by prior efforts to
evaluate Soar is that memory demands do not continue to
increase in an unbounded fashion with prolonged
execution times (Laird, 2009; Laird, Derbinsky, & Voigt,
2011). This is not necessarily an obvious result.
Certainly it is possible to build Soar agents that
increasingly consume memory (by continually increasing
the size of Working Memory) over time. And it is in fact
the case that such agents will eventually slow to a crawl
or exhibit other undesired characeteristics. But it is also
the case that intelligent reasoning systems must base their
decisions on some representation of situational
understanding. Situational understanding does not just
mean understanding what is going on in the current
snapshot of time. It also means maintaining a memory of
past events that have relevance on the interpretation and
understanding of future events. Because of this need to
base understanding in part on persistent memories, it is
reasonable to assume that an applied intelligent agent
might exhibit undesired memory growth. Our first
analysis aims at discovering whether these applied agents
(which again were optimized for capability, not
necessarily for memory use) show any continual growth
in memory use over time.

1 The experiments used Soar 8.6.3 on an HP EliteBook
with a 2.56 GHz Intel Core 2 Processor, and 3 GB of
RAM, with Microsoft Windows XP Service Pack 3. Soar
8.6.3 was the version integrated into the SimJr
environment. Soar 9 integrates several new learning and
memory mechanisms (Laird, 2008), but none of the
applied agents in this study use those mechanisms. A
series of baseline comparisons verified that performance
differences for these agents are not significant between
Soar 8 and Soar 9.

Figure 3 displays the size of Soar’s Working Memory for
each agent during each 10-second snapshot. As expected,
the Wait Task agent makes negligible demands on
memory. The Comm agent also makes modest demands
on Working Memory, because it engages mostly in
communication, and not significantly on the types of
decision making that require sophisticated situation
understanding. The other agents make higher demands on
memory, but the important point to note is that, for these
applied agents, we see a consistent pattern of reaching an
asymptote in Working Memory size that persists for the
duration of execution. Thus, for relatively sophisticated
and capable agents, our results replicate prior studies; we
do not see an undesired pattern of memory growth. It is
also interesting to note that the asymptote is different for
each of the RWA agent missions, reiterating that
representations of short-term knowledge are sensitive not
only to the structure and capabilities of the agent, but also
to the types of missions and situations assigned to the
agent. The lesson here is that building capable applied
agents does not require unmanageable growth in the
internal representations those agents build and use.

Figure 3. Change in Working Memory requirements over
time.

5.2 Scalability of Execution Time

In addition to memory use, perhaps the most important
factor contributing to scaleability of intelligent agents is
response time. It is certainly reasonable to expect
intelligent systems to have fairly expensive computational
requirements, because they generally have to do
sophisticated understanding and decision making. In
highly dynamic environments (such as most of the
environments in our experiments) these potentially
expensive computations must occur frequently. An
important question is whether the execution performance
of an agent will degrade as we increase the capabilities of

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000

Size of Working Memory in # of declarative

relations (y) vs. elapsed time in seconds (x)

Wait task Comm JTAC

RWA-CAS Opt RWA-DAS Opt RWA-SAR Opt

the agent or during the “execution lifetime” of the agent.
Doorenbos (1995) and Laird (2009) have demonstrated
that even agents that have millions of productions in long-
term memory, as well as agents that run for extremely
long times, do not degrade in reaction time. However, it
could be argued that these prior results were obtained
from research agents. Thus, part of our intention with this
investigation was to see if we see similar execution-time
patterns in applied agent systems.

Figure 4. Kernel execution time results for the Comm agent.

Figure 5. Kernel execution time results for the JTAC agent.

Figure 6. Kernel execution time results for the RWA-CAS
agent.

Figure 7. Kernel execution time results for the RWA-DAS
agent.

Figure 8. Kernel execution time results for the RWA-SAR
agent.

0

0.1

0.2

0.3

0.4

0 50 100 150 200 250

Avg. kernel msec per decision cycle (y) vs.

elapsed time in seconds (x)

Wait task Comm

0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000

Avg. kernel msec per decision cycle (y) vs.

elapsed time in seconds (x)

Wait task JTAC

0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000

Avg. kernel msec per decision cycle (y) vs.

elapsed time in seconds (x)

Wait task RWA-CAS Opt

0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000

Avg. kernel msec per decision cycle (y) vs.

elapsed time in seconds (x)

Wait task RWA-DAS Opt

0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000

Avg. kernel msec per decision cycle (y) vs.

elapsed time in seconds (x)

Wait task RWA-SAR Opt

Figure 4 through Figure 8 show the execution-time
patterns over time for each agent in terms of time taken
per decision. Recall that the “standard” response time we
hope for from Soar-based systems is 50 milliseconds per
decision. The first significant observation of these graphs
is that run times are far faster than this typical target,
being closer to the range of 100-200 microseconds per
decision cycle. While average behavior is certainly of
interest, it is also of interest to see where there are peaks
in execution-time requirements. This is because such
peaks represent the “least reactive” episodes that the
agents engage in. While it may be fine, for example, for
an agent to demonstrate average response times of 50
milliseconds, it could be the case that occasional episodes
requiring 5-second response times (to be extreme) would
make the agent basically worthless. Thus, we have
plotted the data in scatter plots that summarize the data
for each 10-second interval. From the figures, we can see
that there is some variation in execution time within each
agent, but the variation is within fairly narrow bands, with
no egregious outliers. We can also see that different
agents have different execution-time profiles, but in all
cases the response times are extremely fast.

One of the major results here is that the agents (with one
exception) do not slow down over time, showing that in
general the applied agents show similar performance
characteristics to the research agents that have been
evaluated in the past. One exception is the RWA-SAR
agent, which does appear to show a slight slowing trend
over time. We have performed additional investigations
and verified that there are not an increased number of
production firings or working-memory changes over time,
so the slowing must be coming from somewhere else. It
is possible (perhaps even likely) that the slowing is
coming from outside of the Soar process, but we will need
to engineer Soar to collect new statistics in order to verify
that. The current kernel time statistic does not measure
“actual time in the kernel thread”, so it can incur a penalty
from external operating-system activities. In future
experiments we will track down the precise nature of this
slowing, as well as an explanation for why the RWA
agent shows some slowing in the SAR scenario but not in
the other RWA scenarios.

6. Practical Agent Performance

The previous experiments measured time spent in the
Soar kernel. This was in part to omit any artificial
degradation of performance, for example due to operating
systems delays, etc. But in practical terms, what we care
about for a deployed agent is its ability to react
sufficiently quickly in real, wall-clock time. Thus, in
addition to the kernel-time data, we collected statistics on
the real wall-clock time per agent decision cycle in each
experiment run. The average data per 10-second time
slice appears in Figure 9, and the cumulative average
appears in Figure 10. We include the cumulate average

here because the graph is smoother and makes the overall
trends and distinctions more clear. For the cumulative
average, we have omitted the data collected during the
first 10-second time slice, because the simulation
environment has a comparatively expensive initialization
time, relative to the agent cycle times. The results show
that the two simplest agents (Wait task and Comm) have
extremely low cycle times. The more complex agents
appear to “settle” between 1.2 and 1.8 milliseconds per
decision.

Figure 9. Real (wall-clock) execution time per agent
decision.

Figure 10. Cumulative average of real (wall-clock) execution
time per agent decision.

Taken together, these results are extremely encouraging.
Over an hour of run time, even the applied agent with the
largest knowledge base (RWA) continues to run

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000

Wall clock msec per decision (y) vs. elapsed

time in seconds (x)

Wait task Comm JTAC

RWA-CAS Opt RWA-DAS Opt RWA-SAR Opt

0

0.5

1

1.5

2

0 1000 2000 3000 4000

Wall clock cumulative msec per decision (y)

vs. elapsed time in seconds (x)

Wait task Comm JTAC

RWA-CAS Opt RWA-DAS Opt RWA-SAR Opt

efficiently. It is clear that different minimal levels of
reaction time are suitable for different agent applications.
For example, the Comm agent simulates communications
processes that happen in the real world over the course of
seconds, minute, and hours. Only the most dynamic tasks
require reaction times at the millisecond level.

For a dynamic first-person shooter game, Laird and Duchi
(2000) determined that humans subjectively judge 100
millisecond decision-cycle times in Soar agents to be the
most “human looking” level of reactivity. If we use 50-
100 milliseconds as a target range, then the results suggest
that we could run in the neighborhood of fifty knowledge
rich agents (or even more knowledge-lean agents) on a
typical 2010 computation platform, with sufficient
reactivity for human-level interaction. In applications in
which an even coarser grain size of reactivity is
appropriate, even more agents could run simultaneously
on a single machine.

Figure 11. Execution-time improvements arising from
iterative optimization of RWA code.

7. Opportunities for Improvement

As mentioned previously, all of the agents used in our
experiments were taken “as is” from the SoarTech code
respositories. Each agent was developed to achieve
particular agent-capability goals and performance
requirements, with run-time and memory efficiency
addressed only to the extent necessary to meet the project
requirements. However, in those cases where we do need
to optimize performance, we have some particular “rules
of thumb” to optimization approaches:

• Identify Soar productions in long-term memory
that have very high firing rates, and find a way to
reduce the firing rate. Strategies might include

changing knowledge representations a bit, using
“smarter” production representations, removing
redundant conditions from productions, or
moving rote computations to external functions.
For example, it does not make much sense to
have a Soar production continuously compute
the range between two points. This is better
done in a chunk of procedural code.

• Identify Soar productions that use high amounts
of memory. This can arise from productions that
have large numbers or combinations of partial
matches in their conditions. In such cases, it can
also be effective to adjust knowledge
representations or possibly to split patterns into
multiple productions in order to generate a more
efficient implementation.

In the results presented above, we applied these basic
rules of thumb in an attempt to find opportunities to
improve the efficiency of the RWA-CAS agent. We
made three rounds of optimizations, each involving
finding a set of related “expensive” productions and then
making the appropriate representation adjustments to
reduce the expense without altering the behavior of the
system. The results of these iterations are presented in
Figure 11. Note that the Y axis has been “zoomed in” to
make the differences between the four agents more
apparent.

Each iteration of improvements led to a visible
improvement in the real-time computational run-time of
the RWA-CAS agent. There is a pattern of diminishing
returns; each optimization resulted in less improvement
than the previous optimization. However, with only a few
relatively inexpensive optimizations, we were able to
improve the performance of the RWA-CAS agent by
about 14%. It also appears that additional rounds of
optimization using this methodology (as opposed to a
complete agent redesign) will not significantly improve
the agent’s performance.

In our analysis above, of “practical agent performance”,
we determined that the range of wall-clock decision-cycle
time for knowledge-rich agents was in the neighborhood
of 1.9 milliseconds. However, with only a few simple
optimizations of the code, we were able to reduce that
reaction time to just over 1.5 milliseconds. We can thus
revise our estimate of the effective number of knowledge-
rich, applied agents on a typical modern hardware
platform to the neighborhood of five or six dozen agents.

We ran an additional multi-agent variation of the CAS
experiment with 6 pairs of JTAC and RWA-CAS agents
working together simultaneously. The results are shown
in Figure 12. These results compare the performance of
RWA-CAS in a 2-agent scenario (one JTAC and one
RWA-CAS) to the performance of one of the RWA-CAS
agents in a 12-agent scenario (six pairs of agents). These

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 1000 2000 3000 4000

Wall clock cumulative msec per decision (y)

vs. elapsed time in seconds (x)

RWA-CAS Orig RWA-CAS Opt.a

RWA-CAS Opt.b RWA-CAS Opt

results suggest that we cannot simply linearly extrapolate
the performance statistics of a small number of agents to a
larger number of agents. The real time per agent decision
(averaged across all twelve agents) remains constant over
time, but is higher than in the 2-agent case. This is
another result that we plan to investigate further, with the
hypothesis that the multi-agent overhead is external to the
Soar process itself, perhaps in the operating system or the
simulation environment.

Figure 12. Comparison of real-time performance in a 2-
agent scenario and a 12-agent scenario.

8. Conclusions

The experiments and analysis presented above provide
evidence to support the following conclusions:

• Soar performance results demonstrated by
research agents in other studies also carry over to
applied agent systems of varying complexity that
were not developed primarly as performance-
evaluation systems. In general, applied Soar
agents run much faster than required for human-
like reaction times.

• The design of typical applied Soar agents does
not imply performance degradation over the
course of long-running tasks.

• There were opportunities to improve the
performance of applied agents that were not
designed with optimized performance as their
primary goal but successive rounds of
optimization soon stopped significantly
impacting performance.

• The number of applied intelligent agents of fairly
high complexity that can be expected to run
within acceptable performance constraints on
typical, modern computer hardware is
somewhere in the dozens. However, there
appears to be an as-yet-unknown overhead as the
number of agents is multiplied.

These results should be encouraging to anybody
considering the deployment of complex applied Soar
agents. As was also demonstrated in previous studies on
research agents, the performance of applied agents appear
to depend more on the structure of those agents than on
the complexity or run-time duration. Although Soar’s
underlying theory dictates cycle times of 50 milliseconds
as a target, applied agents on typical modern hardware run
at least an order of magnitude faster than that. Our
experiments showed that there are some situations where
we do not yet have full explanations for performance
characteristics. This includes gradual slowing over time
of the RWA agent when performing the SAR scenario, as
well as an increased, potentially external, overhead when
significantly multiplying the number of agents running
simultaneously in a scenario. We plan to engineer new
data-collection metrics into the Soar architecture to
investigate these performance phenomena further.

9. References

Doorenbos, R. B. (1995). Production Matching for Large

Learning Systems, Doctoral Dissertation, Computer
Science Department, Carnegie Mellon Univ.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P., & Koss, F. V. (1999). Automated
Intelligent Agents for Combat Flight Simulation. AI
Magazine, 20(1), 27-42.

Laird, J. E. (2009). Millions of rules, billions of
decisions. Presentation at the 29th Soar Workshop.

Laird, J. E. (2008). Extending the Soar architecture.
Proceedings of the 2008 Conference on Artificial
General Intelligence.

Laird, J. E., & Duchi, J. C. (2000). Creating human-like
synthetic characters with multiple skill levels: A
case study using the Soar QuakeBot. Proceedings
of the AAAI Fall Symposium on Simulating Human
Agents.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987),
Soar: An architecture for general intelligence.
Artificial Intelligence, 33(3), 1-64.

Laird, J. E., Derbinsky, N., & Voigt, J. (2011).
Peformance evaluation of declarative memory
systems in Soar. Proceedings of the 20th Behavior
Representation in Modeling and Simulation
Conference.

Newell, A. (1990). Unified theories of cognition. Harvard
University Press.

Taylor, G., Jones, R. M., Goldstein, M., Frederiksen, R.,
& Wray, R. E. (2002). VISTA: A generic toolkit for
visualizing agent behavior. Proceedings of the
Eleventh Conference on Computer Generated
Forces and Behavior Representation. Orlando, FL.

Taylor, G., & Ray, D. (2008). Low fidelity tactical
simulation environment: SimJr. Presentation at the
28th Soar Workshop.

0

1

2

3

4

0 1000 2000 3000 4000

Wall clock msec per decision (y) vs. elapsed

time in seconds (x)

RWA-CAS Opt RWA-CAS Multi

