Characterizing the Performance of Applied Intelligent Agents in Soar

Randolph M. Jones
Steve Furtwangler
Mike van Lent
SoarTech
3600 Green Court, Suite 600
Ann Arbor, MI 48105
734-327-8000
riones@soartech.carfurtwangler@soartech.comanlent@soartech.com

Keywords:
Applied intelligent agents, Soar, Cognitive arctiitee, Performance evaluation

ABSTRACT: There have been a few efforts to evaluate the tobaes of performance of the Soar cognitive
architecture, with positive results. However, poexs efforts have focused primarily on running &nehitecture with
agent models that are research systems, desigremifisplly for Soar performance evaluation, or athise limited

in capability. This paper reports an effort to ¢éalt number of applied intelligent agents “off thek” and use them
for a further evaluation of Soar. One primary gaslto see whether the performance results foraedesystems
also hold for applied agents. A second goal isharacterize Soar’s “practical” ability to run appd, knowledge-
rich agents with performance that will scale in ragnof agents, memory requirements, and executioa t

1. Introduction * To determine whether the Soar performance
results demonstrated by other studies also carry
We have a longstanding interest in the deploymént o over to applied agent systems
knowledge-rich intelligent agent systems in opersl * To determine whether the performance of
environments, particularly for DoD applicationsorRhe applied Soar agents will degrade over the course
practical application of these agent systems, weire a of long-running tasks
platform that is stable, robust, and operates withi ¢ To determine how much these applied agents can
acceptable memory and execution-time constraints. be optimized beyond what was required to
variety of efforts have characterized the Soar itogn satisfy the project requirements and what these
architecture (Laird, Rosenbloom, & Newell, 1987; additional optimizations consist of
Newell, 1990) and its ability to serve as the eagior To determine the number of applied intelligent
such intelligent agents. However, these studiege ha agents that can be expected to run within
largely focused on agent systems that are not expr acceptable performance constraints on typical,
deployed systems, and/or agent systems that were modern computer hardware

developed primarily with the evaluation of the Soar

architecture in mind. For this study, we considgplied 2 The Soar Cognitive Architecture
agentsto be interactive intelligent systems that werétbu
to generate a particular set of target behaviorsséme goar is a software architecture for building coratiohal
application, within the time and budget constradftene cognitive models and intelligent agent systems.arSo
or more projects. In addition, we consider appigents main execution loop is called traecision cycle which
in general (with some exceptions) to incorporaterémo consists of a fixed sequence of phases, showngur&il.
complexity in terms of knowledge and representatfam | the input phase, input from an external envirenm
systems built specifically for research or perfont® pecomes represented as a set of interconnectecbts/inb
evaluation. a short-termWorking Memory In the elaboration phase
o all relevant long-term knowledge pattetrigger and fire
To respond to this situation, we have run a nundfer {5 elaporate the system’s representation of itgeotr
additional performance tests on Soar, but usingMagesjtuation and to proposeperators (discrete, deliberate
systems that were developed for DoD projects inctvhi actions) that are applicable in that situation. The
the evaluation of Soar was not a goal. These ageffowledge patterns are implemented p®ductions
systems were developed with the primary goal oftmge \hich are abstract patterns with conditions andoast

application-specific reasoning and behavior gem@at gomewhat akin to logical implication rules.
requirements. Efforts to optimize the efficiendytlese

systems were of secondary emphasis, as long as m

i t th act . s We h a ﬁltiple candidate operators are compared based on
systems met the prOjec requirements. € haver evepreference knowledge, resulting in the selectionaof
goals for this study:

single operator for execution per decision cyclée T
selected operator executes by firing associated
productions that specify the actions to be perfainmf

the end of the decision cycl8par generatenew outputs
to enact actions in thexternal environmer

Llaborate Compare S i
A Selec PPy
ropas 116 e { g, [2% { ouem H

Operators Operators
Figure 1. Phases of the Soar decision cyc

In addition to being a software architecture irlftsSoar
represents the implementation of a cognitive thedrhe
mind. In he typical application of the theory, Sc
decision cycles map onto the types of deliberatentel
actions that occur in the human brain about onesyes0
milliseconds (Newell, 1990) Although Soar develope
do not always adhere directly to the theoret
constraints, the 50 msec/decision value is a tatgstis
often aimed for, if only in system design, if natactual
implementation.

Symbolic Long-Term Memorics

Procedural Semantic Tipisodic

Semantic
Leaming

Reinforcement
Learning

Lpisodic
Learning

Symbolic Working Memory

+Activation |

Appraisals

| Perecptual STM

| |

_r
.

L - |

Visual LT Memory ‘

Figure 2. Soa 9 architecture, including reinforcement
learning, semantic memory, and episodic memor

3. Previous Evaluations

Through a variety of research and experimentatftorts,
Soar has been demonstratedojperat: effectively and
efficiently using traditional computer architects on
large knowledge bases, and to perform robustly v
running for long execution times. Doorenbos (1¢
demonstrated that the contemporary implementatio
Soar supported systems with over 100,000 produstn
longterm memory with no degradation in execution tir
More recently, Laird2009) demonstrated that some fa
simple agents (in terms of capability, but notennts of
knowledge base size) could acquire over 17 miltides
and run for over 10 mlibn decision cycles, again with |
degradation in performance. Laird also ran agerith
smaller numbers of rules for billions of decisioycles,
again with no degradation in performa. Additionally,
Laird, Derbinsky, and Voigt (20)}1have demonstred
robust performance results with systems that aedaige
amounts of new knowledge using thdeclarative
(semantic, and episodicghemory and learning modul
introduced in Version 9 of the Soar architecture (:
Figure 3. Our goal is to supplement these exis

studies with further studies of the performanceSofr
using applied agent systems that were built forbdipy
and not primarily to measure Soar’s rstness or speed.
A significant question for our investigation is wher the
assumptions and perfoemce results that held for t
research systenis the prior evaluationsill also hold for
a variety of applied systemsFor such applied systems,
we hawe various anecdotal data. For example the Ti-
Soar system (Jones et al., 1999) in 1997 cont:
approximately &00 productions and was able to perf
tactical air combat missions in retime for up to 8
continuous hours of operatioiFor Soar work in general,
the standard target for “real time” has been
milliseconds per decision cycle (Newell, 199
However, this papewill provide more concrete data
the performance and robtness of such applied systel
include cycles timeshat are at least an order
magnitude faster that 50 millisecor

In the following section we describe each of theliaol

agent systems examined in the current stuTable 1

presents a quantitative summeof the complexity of
these agentsia two common measur, as well as the
agents used ithe study by Laird et al. (20).

Table 1. Comparison of agent complexity. Working
Memory (WM) size reflects the complexity of the agent’
internal state representation. # of productions riects the
complexity of the agent’s longterm knowledge.

Agent # of production Avg WM size
Research Systel

Simple robot 22 ~250

Complex robot 530 ~3000
Applied System

Comm 224 ~1600

JTAC 274 ~7600

RWA-CAS 2045 ~10500

RWA-DAS 204¢ ~650(

RWA-SAR 204¢ ~900(

4. Applied Agents

For the purposes of this study, we selected a nurok
existing applied Soar agents, developed by Soar
under a combination of internal and external prsje
One of the criteria for our selection of agents vitzet
they all operate within a singleteractive environment.
Thus, all of the selected agents have been integjiato
SoarTech’s SimJr software simulation environn
(Taylor & Ray, 2008 which provides low-cost
simulation of entitiesand terrain for a variety of [D-
relevant missions andpplications. This is partly 1

reduce the chance that different execution enviemtsr platform is a simulated rotary-wing aircraft (RWA,
will play a significant role in our measurementsdescribed in the following section). The JTAC dgen
Although we are also interested in assessing gkenemcludes 174 productions in its long-term memotfyor
“practical” performance of these agents, we wanbéo the experimentation scenario, we equipped the RWA
able to control the environment to some extentatBaid, assets with an unrealistic number of missiles s the
each of the agents performs a different type ofsitmis JTAC can continue running repeated CAS missions
with different sensing, understanding, and reaspniragainst targets for a full hour. We ran the sdenfar an
requirements. So we expect to see at least sonaion hour of real time, collecting performance statstevery
across agents, in at least some of the performant@ seconds.

measures. Following, we describe each of the agesed

in our experiments: 4.4 RWA Agent

4.1 Wait Task Agent For the purposes of this experiment, the RWA agent
serves as three different agents. That is, we assdgle

The Wait Task agent can be considered the simBlest RWA agent model, consisting of 2045 productions in

agent that is actually a complete Soar prograntorisist long-term memory. However, we measured the agent’s

of a single production that essentially “makes theerformance in three different mission areas and

decision” to do nothing during each of Soar's decis scenarios. This allows us to characterize agent

cycles. Thus, this agent provides a comparisorlines performance that is more a function of its taskiman its

for the other agents, in terms of execution time& anknowledge base.

memory resources. We ran the Wait Task agent rfior a

hour of real (wall clock) time, collecting statii every In the RWA-CAS scenario, the RWA agent provides the

10 seconds. weapons support for the JTAC agent described above.
For our experiment, we placed an unrealisticallsgda
4.2 Comm Agent number of CAS targets and gave the RWA vehicle an

unrealistically large number of simulated hellfinéssiles.
The Comm agent is one of a set of agents develbged This allowed us to run the scenario with fairly tonous
SoarTech to simulate the communications pattermeasoning and activity for an hour of real timeljexing
between various commanders in a Navy battle fl§dte performance statistics every 10 seconds.
current command scenario focuses heavily on
communication and very little on any kind ofin the RWA-DAS scenario, the same RWA agent
sophisticated reasoning. Thus, we primarily expecee performs a Direct Air Strike mission against a nemobf
memory and interaction effects for the Comm agast, targets. This mission involves the coordinationfadr
opposed to intensive computation for decision mgkin different aircraft (each controlled by an instarafethe
There are five Comm agents that send message<iio eRWA agent code) to plan attack routes, follow d&tac
other, but each has a similar performance profildwus, routes, then coordinate attacks against the targdie
our results include only the data from one of the f again ran the scenario for an hour of real timéecting
agents (the one that engages in the most commiamcatperformance statistics every 10 seconds. In tesario,
during the command scenario). The Comm agethere is one Lead aircraft and three support dtrcrahe
includes 224 productions in its long-term memorhe performance profiles of the support aircraft amilsir but
command scenario takes about 10 minutes of rea tom somewhat less demanding than for the Lead aircraft
run, so we collected performance statistics eveby I(because the Lead does most of the decision making)
seconds for 10 minutes. Thus, in this paper we are only reporting the stias

collected for the Lead RWA agent.
4.3 JTAC Agent

In the RWA-SAR scenario, the same RWA agent
The JTAC agent performs the Joint Terminal Aiperforms a search-and-rescue mission, which mostly
Controller mission in simulations of Close Air Sapp consists of a systematic search of an area andtirgpof
(CAS). CAS missions involve a spotter (usuallytbe observations. An important feature that distingassthis
ground) who calls target information to an aircrafio scenario from the other RWA scenarios is that tientis
delivers weapons against the target. CAS missiomenfigured to report a large amount of its internal
involve a high degree of communication andeasoning to an external system (called VISTA) that
coordination, as well as risk assessment, becduse provides graphical visualization of the agent’s tria
targets are in close proximity to friendly forcesThe state” (Taylor et al., 2002). This imposes addiio
JTAC agent for this experiment identifies targesuglly performance, memory, and interaction requirememts o
(in simulation) and engages in a mission briefinghe agent. Once again, we ran the RWA-SAR scenario
correction, monitoring, and execution process wath for an hour of real time, collecting performancatistics
airborne weapons platform. In this scenario, tle@pon every 10 seconds. For each of the RWA scenaries, w

ran experiments using the original RWA code base, &igure 3 displays the size of Soar's Working Memfany

well as experiments after a set of fairly routineeach agent during each 10-second snapshot. Astexipe
optimizations to the code (see the section below dhe Wait Task agent makes negligible demands on
Opportunities for Improvement). For the initialmemory. The Comm agent also makes modest demands
performance results we show only the optimized RWAn Working Memory, because it engages mostly in
performance. Performance of the RWA agent befommmunication, and not significantly on the typels o
optimization had the same characteristic shape wittecision making that require sophisticated situmatio

slightly worse performance. understanding. The other agents make higher desramd
memory, but the important point to note is that, tfeese
5. Experimental Results applied agents, we see a consistent pattern ofiirgaan

asymptote in Working Memory size that persists tfo

The following sections present the primary resaitsl duration of execution. Thus, for relatively sopiciated
analysis of the collection of experiments descriabdve. and capable agents, our results replicate priafiesywe
The goals of our analysis are to determine how tH#0 not see an undesired pattern of memory grouiths
memory and computational performance of the agen®so interesting to note that the asymptote isedkfit for
scales over time, as well as assess the “practic&&ch of the RWA agent missions, reiterating that
scalability of applied agent systems. We will dise representations of short-term knowledge are semsitot
what we mean by “practical” in the relevant subisect only to the structure and capabilities of the agbat also

to the types of missions and situations assignethé¢o

5.1 Scalability of Memory Requirements agent. The lesson here is that building capabjsieh
agents does not require unmanageable growth in the
One of the results demonstrated by prior efforts tthternal representations those agents build and use
evaluate Soar is that memory demands do not cantimu
increase in an unbounded fashion with prolonge
execution times (Laird, 2009; Laird, Derbinsky, &igt,
2011). This is not necessarily an obvious resul « RWA-CAS Opt + RWA-DAS Opt » RWA-SAR Opt
Certainly it is possible to build Soar agents tha
increasingly consume memory (by continually inchegs | 12000

» Wait task = Comm JTAC

the size of Working Memory) over time. And it isfact 10000 e
the case that such agents will eventually slow twaavl f—

or exhibit other undesired characeteristics. Bus ialso 8000 3

the case that intelligent reasoning systems muss tieeir 6000 A

decisions on some representation of situationg
understanding. Situational understanding does junsit
mean understanding what is going on in the curref 2000 =
snapshot of time. It also means maintaining a rmgrab 0
past events that have relevance on the interpoataind
understanding of future events. Because of thedirte 0 1000 2000 3000 4000
base understanding in part on persistent memadities,
reasonable to assume that an applied intelligeentag
might exhibit undesired memory growth. Our first
analysis aims at discovering whether these apglgehts
(which again were optimized for capability, not _ _)
necessarily for memory use) show any continual Qnowfi;ggre 3. Change in Working Memory requirements oer
in memory use over time. ‘

4000

Size of Working Memory in # of declarative
relations (y) vs. elapsed time in seconds (x)

5.2 Scalability of Execution Time

In addition to memory use, perhaps the most importa

! The experiments used Soar 8.6.3 on an HP EliteBodfctor contributing to scaleability of intelligeagents is
with a 2.56 GHz Intel Core 2 Processor, and 3 GB ¢FSPONse time. It is certainly reasonable to expec
RAM, with Microsoft Windows XP Service Pack 3. Boa INtelligent systems to have fairly expensive corapiahal
8.6.3 was the version integrated into the SimJduirements, because they generally have to do
environment. Soar 9 integrates several new legraid SOPhisticated understanding and decision making |
memory mechanisms (Laird, 2008), but none of thgighly dynamic environments (such as most of the
applied agents in this study use those mechanisms. environments in our experiments) these potentially

series of baseline comparisons verified that perésrce €XPensive computations must occur frequently. An
differences for these agents are not significariveen mportant question is whether the execution pertoroe
Soar 8 and Soar 9. of an agent will degrade as we increase the capediof

the agent or during the “execution lifetime” of tagent.
Doorenbos (1995) and Laird (2009) have demonstrate
that even agents that have millions of productiorieng-
term memory, as well as agents that run for extheme
long times, do not degrade in reaction time. Haoaveit
could be argued that these prior results were obdthi
from research agents. Thus, part of our intentidh this
investigation was to see if we see similar executime

patterns in applied agent systems.

« Waittask = Comm

» Wait task = RWA-CAS Opt

0 1000

2000 3000 4000

Avg. kernel msec per decision cycle (y) vs.

Avg. kernel msec per decision cycle (y) vs.
elapsed time in seconds (x)

Figure 4. Kernel execution time results for the Cmmm agent.

« Wait task = JTAC

0 1000

2000 3000 4000

Avg. kernel msec per decision cycle (y) vs.
elapsed time in seconds (x)

Figure 5. Kernel execution time results for the JTA agent.

0.4 elapsed time in seconds (x)
0.3 . E——
Figure 6. Kernel execution time results for the RWA-CAS
0.2 agent.
0.1
0 NYEEEE TR T Y LA » Waittask = RWA-DAS Opt
0 50 100 150 200 250 0.4
0.3

0 1000

2000 3000 4000

Avg. kernel msec per decision cycle (y) vs.
elapsed time in seconds (x)

Figure 7. Kernel execution time results for the RWA-DAS
agent.

» Waittask = RWA-SAR Opt

0 1000 2000 3000 4000

Avg. kernel msec per decision cycle (y) vs.
elapsed time in seconds (x)

Figure 8. Kernel execution time results for the RVWA-SAR
agent.

Figure 4 through Figure 8 show the execution-timbere because the graph is smoother and makes ¢hallov
patterns over time for each agent in terms of tieleen trends and distinctions more clear. For the cutivda
per decision. Recall that the “standard” respdime we average, we have omitted the data collected duitieg
hope for from Soar-based systems is 50 millisecqeds first 10-second time slice, because the simulation
decision. The first significant observation ofsheggraphs environment has a comparatively expensive inition

is that run times aréar faster than this typical target, time, relative to the agent cycle times. The rssshow
being closer to the range of 100-2fiicrosecondger that the two simplest agents (Wait task and Comavgeh
decision cycle. While average behavior is cernjail extremely low cycle times. The more complex agents
interest, it is also of interest to see where tleeeepeaks appear to “settle” between 1.2 and 1.8 millisecopds

in execution-time requirements. This is becauseh sudecision.

peaks represent the “least reactive” episodes thet
agents engage in. While it may be fine, for examfir + Wait task = Comm + JTAC

an agent to _demonstrate average response t_ime@ of « RWA-CAS Opt - RWA-DAS Opt » RWA-SAR Opt
milliseconds, it could be the case that occasiep@odes
requiring 5-second response times (to be extrenoejdv 25
make the agent basically worthless. Thus, we ha
plotted the data in scatter plots that summarize data 2
for each 10-second interval. From the figurescam see 15
that there is some variation in execution time imithach ’

agent, but the variation is within fairly narrownuks, with 1

no egregious outliers. We can also see that difiter

agents have different execution-time profiles, butall 0.5 s

cases the response times are extremely fast. 0

One of the major results here is that the agenith @ne 0 1000 2000 3000 4000

exception) do not slow down over time, showing timat
general the applied agents show similar performanc o
characteristics to the research agents that haem be time in seconds (x)
evaluated in the past. One exception is the RWARSA
agent, which does appear to show a slight slowiegdt

over time. We have performed additional investgst Floure 9. Real (wall-clock) execution time per age

Wall clock msec per decision (y) vs. elapsed

and verified that there are not an increased nunober 9¢/SIOn-

production firings or working-memory changes overet,

so the slowing must be coming from somewhere else. + Wait task = Comm + JTAC

is possible (perhaps even likely) that the slowisg

coming from outside of the Soar process, but wenveied * RWA-CAS Opt - RWA-DAS Opt - RWA-SAR Opt
to engineer Soar to collect new statistics in otdererify 2

that. The current kernel time statistic does netsure

“actual time in the kernel thread”, so it can inaypenalty

from external operating-system activities. In fetu 15

experiments we will track down the precise naturéhis 7—

slowing, as well as an explanation for why the RWA
agent shows some slowing in the SAR scenario binno

the other RWA scenarios. 0.5 o=

6. Practical Agent Performance 0 - . - .
0 1000 2000 3000 4000

The previous experiments measured time spent in t

Soar kernel. This was in part to omit any artifici Wall clock cumulative msec per decision (y)

degradation of performance, for example due to aijpey vs. elapsed time in seconds (x)

systems delays, etc. But in practical terms, wimtcare
about for a deployed agent is its ability to react

sufficiently quickly in real, wall-clock time. T in Figure 10. Cumulative average of real (wall-clockgxecution
addition to the kernel-time data, we collectedistias on time per agent decision.

the real wall-clock time per agent decision cyeleeach)
experiment run. The average data per 10-second tith@ken together, these results are extremely engoga
slice appears in Figure 9, and the cumulative meera©OVver an hour of run time, even the applied agettt tie

appears in Figure 10. We include the cumulateameer largest knowledge base (RWA) continues to run

efficiently. It is clear that different minimal \els of changing knowledge representations a bit, using

reaction time are suitable for different agent agpions. “smarter” production representations, removing
For example, the Comm agent simulates communication redundant conditions from productions, or
processes that happen in the real world over theseocof moving rote computations to external functions.
seconds, minute, and hours. Only the most dynéewsics For example, it does not make much sense to
require reaction times at the millisecond level. have a Soar production continuously compute
the range between two points. This is better
For a dynamic first-person shooter game, Laird Badhi done in a chunk of procedural code.
(2000) determined that humans subjectively judg® 10 . Identify Soar productions that use high amounts
millisecond decision-cycle times in Soar agentdéahe of memory. This can arise from productions that
most “human looking” level of reactivity. If we @$50- have large numbers or combinations of partial
100 milliseconds as a target range, then the mesutigest matches in their conditions. In such cases, it can
that we could run in the neighborhood of fifty kriedge also be effective to adjust knowledge
rich agents (or even more knowledge-lean agentsa on representations or possibly to split patterns into
typical 2010 computation platform, with sufficient multiple productions in order to generate a more
reactivity for human-level interaction. In applices in efficient implementation.

which an even coarser grain size of reactivity is

appropriate, even more agents could run simultesigou In the results presented above, we applied thesi& ba

on a single machine. rules of thumb in an attempt to find opportunities

improve the efficiency of the RWA-CAS agent. We

made three rounds of optimizations, each involving

* RWA-CAS Orig + RWA-CAS Opt.a finding a set of related “expensive” productionsl ahen

« RWA-CAS Opt.b + RWA-CAS Opt making the appropriate representation adjustmeats t

reduce the expense without altering the behaviothef

1.9 system. The results of these iterations are ptedein

18 P Figure 11. Note that the Y axis has been “zooméda

: / e make the differences between the four agents more
¥

1.7 - apparent.

1.6 1 Each iteration of improvements led to a visible
15 - improvement in the real-time computational run-tiofe
the RWA-CAS agent. There is a pattern of diminighi
1.4 6 returns; each optimization resulted in less impnoget
than the previous optimization. However, with oalfew
13 ' ! ' ' relatively inexpensive optimizations, we were alte

0 1000 2000 3000 4000 improve the performance of the RWA-CAS agent by
about 14%. It also appears that additional rouofls
Wall clock cumulative msec per decision (y) optimization using this methodology (as opposedato

vs. elapsed time in seconds (x) complete agent redesign) will not significantly irape

the agent’s performance.

Figure 11. Execution-time improvements arising fra

iterative optimization of RWA code. In our analysis above, of “practical agent perfanoe,
.. we determined that the range of wall-clock decisigde
7. Opportunities for Improvement time for knowledge-rich agents was in the neighboth

of 1.9 milliseconds. However, with only a few siep
As mentioned previously, all of the agents usedim gptimizations of the code, we were able to reduc t
experiments were taken “as is” from the SoarTeotteco reaction time to just over 1.5 milliseconds. We tiaus
respositories. Each agent was developed to achiex&ise our estimate of the effective number of kienge-
particular agent-capability goals and performancgch applied agents on a typical modern hardware
requirements, with run-time and memory efficiencyy|atform to the neighborhood of five or six dozeeats.
addressed only to the extent necessary to megirtfect
requirements. However, in those cases where weedd e ran an additional multi-agent variation of thASC
to optimize performance, we have some particulate¥ experiment with 6 pairs of JTAC and RWA-CAS agents
of thumb” to optimization approaches: working together simultaneously. The results drews
in Figure 12. These results compare the performanic
* Identify Soar productions in long-term memoryRWA-CAS in a 2-agent scenario (one JTAC and one
that have very high firing rates, and find a way tR\WA-CAS) to the performance of one of the RWA-CAS
reduce the firing rate. Strategies might includegents in a 12-agent scenario (six pairs of agerfthpse

results suggest that we cannot simply linearlyapdtate
the performance statistics of a small number ohtg® a
larger number of agents. The real time per ageaistn
(averaged across all twelve agents) remains cangteen
time, but is higher than in the 2-agent case. T#his
another result that we plan to investigate furtinéth the
hypothesis that the multi-agent overhead is extemtne
Soar process itself, perhaps in the operating systethe
simulation environment.

« RWA-CAS Opt « RWA-CAS Multi

0 T T T 1
0 1000 2000 3000 4000
Wall clock msec per decision (y) vs. elapsed
time in seconds (x)
Figure 12. Comparison of real-time performance ina 2-

agent scenario and a 12-agent scenario.

8. Conclusions

The experiments and analysis presented above grovigird, J. E. (2008).

evidence to support the following conclusions:
e Soar performance

results demonstrated by

These results should be encouraging to anybody
considering the deployment of complex applied Soar
agents. As was also demonstrated in previousesuati
research agents, the performance of applied agepisar

to depend more on the structure of those agents daha
the complexity or run-time duration. Although Sear
underlying theory dictates cycle times of 50 médtends

as a target, applied agents on typical modern renelwin

at least an order of magnitude faster than thatur O
experiments showed that there are some situatidvesewn
we do not yet have full explanations for performanc
characteristics. This includes gradual slowingraime

of the RWA agent when performing the SAR scenax#o,
well as an increased, potentially external, ovedheben
significantly multiplying the number of agents rimg
simultaneously in a scenario. We plan to engimesw
data-collection metrics into the Soar architectuoe
investigate these performance phenomena further.

9. References

Doorenbos, R. B. (1995Rroduction Matching for Large
Learning Systemdoctoral Dissertation, Computer
Science Department, Carnegie Mellon Univ.

Jones, R. M., Laird, J. E., Nielsen, P. E., CoulkerJ.,
Kenny, P., & Koss, F. V. (1999). Automated
Intelligent Agents for Combat Flight SimulatioAl
Magazine 20(1), 27-42.

Laird, J. E. (2009). Millions of rules, billions of
decisions Presentation at the ®%oar Workshop.

Extending the Soar architextu

Proceedings of the 2008 Conference on Atrtificial

General Intelligence

research agents in other studies also carry over k8ird, J. E., & Duchi, J. C. (2000). Creating huriike

applied agent systems of varying complexity that
were not developed primarly as performance-
In general, applied Soar
agents run much faster than required for human-

evaluation systems.

like reaction times.

synthetic characters with multiple skill levels: A
case study using the Soar QuakeB®&toceedings
of the AAAI Fall Symposium on Simulating Human
Agents

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1887

« The design of typical applied Soar agents does Sog.r:. An a_rchitecture for general intelligence.
not imply performance degradation over the _ Artificial Intelligence, 33(3), 1-64.
course of long-running tasks. Laird, J. E., Derbinsky, N., & Voigt, J. (2011).
.« There were opportunities to improve the Peformance evaluation of declarative memory

performance of applied agents that were not

systems in SoarProceedings of the 20th Behavior

designed with optimized performance as their Egﬁifﬂggﬁon in - Modeling and Simulation
primary goal but successive rounds of - . .
optimization soon stopped significantly Newell, A. (1990).Unified theories of cognitiorHarvard

impacting performance.

» The number of applied intelligent agents of fairly
high complexity that can be expected to run
within acceptable performance constraints on

is
ther

appears to be an as-yet-unknown overhead as t

hardware
However,

typical, modern computer
somewhere in the dozens.

number of agents is multiplied.

University Press.
Taylor, G., Jones, R. M., Goldstein, M., FredenksR.,
& Wray, R. E. (2002). VISTA: A generic toolkit for
visualizing agent behavior. Proceedings of the
Eleventh Conference on Computer Generated
Forces and Behavior Representatio@rlando, FL.
gylor, G., & Ray, D. (2008). Low fidelity tactical
simulation environment: SimJrPresentation at the
28" Soar Workshop.

