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ABSTRACT : There have been a few efforts to evaluate the robustness of performance of the Soar cognitive 
architecture, with positive results.  However, previous efforts have focused primarily on running the architecture with 
agent models that are research systems, designed specifically for Soar performance evaluation, or otherwise limited 
in capability.  This paper reports an effort to take a number of applied intelligent agents “off the shelf” and use them 
for a further evaluation of Soar.  One primary goal is to see whether the performance results for research systems 
also hold for applied agents.  A second goal is to characterize Soar’s “practical” ability to run applied, knowledge-
rich agents with performance that will scale in number of agents, memory requirements, and execution time. 
 
1. Introduction 
 
We have a longstanding interest in the deployment of 
knowledge-rich intelligent agent systems in operational 
environments, particularly for DoD applications.  For the 
practical application of these agent systems, we require a 
platform that is stable, robust, and operates within 
acceptable memory and execution-time constraints.  A 
variety of efforts have characterized the Soar cognitive 
architecture (Laird, Rosenbloom, & Newell, 1987; 
Newell, 1990) and its ability to serve as the engine for 
such intelligent agents.  However, these studies have 
largely focused on agent systems that are not applied or 
deployed systems, and/or agent systems that were 
developed primarily with the evaluation of the Soar 
architecture in mind.  For this study, we consider applied 
agents to be interactive intelligent systems that were built 
to generate a particular set of target behaviors for some 
application, within the time and budget constraints of one 
or more projects.  In addition, we consider applied agents 
in general (with some exceptions) to incorporate more 
complexity in terms of knowledge and representation than 
systems built specifically for research or performance 
evaluation. 
 
To respond to this situation, we have run a number of 
additional performance tests on Soar, but using agent 
systems that were developed for DoD projects in which 
the evaluation of Soar was not a goal.  These agent 
systems were developed with the primary goal of meeting 
application-specific reasoning and behavior generation 
requirements.  Efforts to optimize the efficiency of these 
systems were of secondary emphasis, as long as the 
systems met the project requirements.  We have several 
goals for this study: 
 

• To determine whether the Soar performance 
results demonstrated by other studies also carry 
over to applied agent systems 

• To determine whether the performance of 
applied Soar agents will degrade over the course 
of long-running tasks 

• To determine how much these applied agents can 
be optimized beyond what was required to 
satisfy the project requirements and what these 
additional optimizations consist of  

• To determine the number of applied intelligent 
agents that can be expected to run within 
acceptable performance constraints on typical, 
modern computer hardware 

 
2. The Soar Cognitive Architecture 
 
Soar is a software architecture for building computational 
cognitive models and intelligent agent systems.  Soar’s 
main execution loop is called the decision cycle, which 
consists of a fixed sequence of phases, shown in Figure 1. 
In the input phase, input from an external environment 
becomes represented as a set of interconnected symbols in 
a short-term Working Memory. In the elaboration phase 
all relevant long-term knowledge patterns trigger and fire 
to elaborate the system’s representation of its current 
situation and to propose operators (discrete, deliberate 
actions) that are applicable in that situation. The 
knowledge patterns are implemented as productions, 
which are abstract patterns with conditions and actions, 
somewhat akin to logical implication rules.   
 
Multiple candidate operators are compared based on 
preference knowledge, resulting in the selection of a 
single operator for execution per decision cycle. The 
selected operator executes by firing associated 
productions that specify the actions to be performed. At 



the end of the decision cycle, Soar generates 
to enact actions in the external environment.
 

Figure 1.  Phases of the Soar decision cycle.

In addition to being a software architecture in itself, Soar 
represents the implementation of a cognitive theory of the 
mind.  In the typical application of the theory, Soar 
decision cycles map onto the types of deliberate, mental 
actions that occur in the human brain about once every 50 
milliseconds (Newell, 1990).  Although Soar developers 
do not always adhere directly to the theoretical 
constraints, the 50 msec/decision value is a target that is 
often aimed for, if only in system design, if not in actual 
implementation.   

Figure 2.  Soar 9 architecture, including reinforcement 
learning, semantic memory, and episodic memory.

3. Previous Evaluations 

Through a variety of research and experimentation efforts, 
Soar has been demonstrated to operate
efficiently using traditional computer architecture
large knowledge bases, and to perform robustly when 
running for long execution times.  Doorenbos (1995) 
demonstrated that the contemporary implementation of 
Soar supported systems with over 100,000 productions i
long-term memory with no degradation in execution time.  
More recently, Laird (2009) demonstrated that some fairly 
simple agents (in terms of capability, but not in terms of 
knowledge base size) could acquire over 17 million rules 
and run for over 10 million decision cycles, again with no 
degradation in performance. Laird also ran agents with 
smaller numbers of rules for billions of decision cycles
again with no degradation in performance
Laird, Derbinsky, and Voigt (2011) have demonstrate
robust performance results with systems that acquire large 
amounts of new knowledge using the 
(semantic, and episodic) memory and learning modules 
introduced in Version 9 of the Soar architecture (see 
Figure 2).  Our goal is to supplement these existing 

Soar generates new outputs 
external environment.   
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studies with further studies of the performance of Soar 
using applied agent systems that were built for capability 
and not primarily to measure Soar’s robu
A significant question for our investigation is whether the 
assumptions and performance results that held for the 
research systems in the prior evaluations w
a variety of applied systems.
we have various anecdotal data.  For example the TacAir
Soar system (Jones et al., 1999) in 1997 contained 
approximately 8,000 productions and was able to perform 
tactical air combat missions in real 
continuous hours of operation.  
the standard target for “real time” has been 50 
milliseconds per decision cycle (Newell, 1990).  
However, this paper will provide more concrete data on 
the performance and robustness of such applied systems, 
include cycles times that are at least an order of 
magnitude faster that 50 milliseconds.

In the following section we describe each of the applied 
agent systems examined in the current study.  
presents a quantitative summary 
these agents via two common measures
agents used in the study by Laird et al. (2011

 
Table 1.  Comparison of agent complexity.  Working 
Memory (WM) size reflects the complexity of the agent’s 
internal state representation.  # of productions reflects the 
complexity of the agent’s long-

Agent # of productions

Research Systems

Simple robot 22 

Complex robot 530 

Applied Systems

Comm 224 

JTAC 274 

RWA-CAS 2045 

RWA-DAS 2045 

RWA-SAR 2045 

 
4. Applied Agents 
 
For the purposes of this study, we selected a number of 
existing applied Soar agents, developed by SoarTech 
under a combination of internal and external projects.  
One of the criteria for our selection of agents was that 
they all operate within a single in
Thus, all of the selected agents have been integrated into 
SoarTech’s SimJr software simulation environment 
(Taylor & Ray, 2008), which provides low
simulation of entities and terrain for a variety of Do
relevant missions and applications.  This is partly to 
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-term knowledge. 

# of productions Avg WM size 

Research Systems 

~250 

~3000 

Applied Systems 

~1600 

~7600 

~10500 

~6500 

~9000 

For the purposes of this study, we selected a number of 
existing applied Soar agents, developed by SoarTech 
under a combination of internal and external projects.  
One of the criteria for our selection of agents was that 
they all operate within a single interactive environment.  
Thus, all of the selected agents have been integrated into 
SoarTech’s SimJr software simulation environment 

), which provides low-cost 
and terrain for a variety of DoD-

applications.  This is partly to 



reduce the chance that different execution environments 
will play a significant role in our measurements.  
Although we are also interested in assessing general 
“practical” performance of these agents, we want to be 
able to control the environment to some extent.  That said, 
each of the agents performs a different type of mission, 
with different sensing, understanding, and reasoning 
requirements.  So we expect to see at least some variation 
across agents, in at least some of the performance 
measures.  Following, we describe each of the agents used 
in our experiments: 
 
4.1 Wait Task Agent 
 
The Wait Task agent can be considered the simplest Soar 
agent that is actually a complete Soar program.  It consist 
of a single production that essentially “makes the 
decision” to do nothing during each of Soar’s decision 
cycles.  Thus, this agent provides a comparison baseline 
for the other agents, in terms of execution time and 
memory resources.  We ran the Wait Task agent for an 
hour of real (wall clock) time, collecting statistics every 
10 seconds. 
 
4.2 Comm Agent 
 
The Comm agent is one of a set of agents developed by 
SoarTech to simulate the communications patterns 
between various commanders in a Navy battle fleet.  The 
current command scenario focuses heavily on 
communication and very little on any kind of 
sophisticated reasoning.  Thus, we primarily expect to see 
memory and interaction effects for the Comm agent, as 
opposed to intensive computation for decision making.  
There are five Comm agents that send messages to each 
other, but each has a similar performance profile.  Thus, 
our results include only the data from one of the five 
agents (the one that engages in the most communication 
during the command scenario).  The Comm agent 
includes 224 productions in its long-term memory.  The 
command scenario takes about 10 minutes of real time to 
run, so we collected performance statistics every 10 
seconds for 10 minutes. 
 
4.3 JTAC Agent 
 
The JTAC agent performs the Joint Terminal Air 
Controller mission in simulations of Close Air Support 
(CAS).  CAS missions involve a spotter (usually on the 
ground) who calls target information to an aircraft who 
delivers weapons against the target.  CAS missions 
involve a high degree of communication and 
coordination, as well as risk assessment, because the 
targets are in close proximity to friendly forces.  The 
JTAC agent for this experiment identifies targets visually 
(in simulation) and engages in a mission briefing, 
correction, monitoring, and execution process with an 
airborne weapons platform.  In this scenario, the weapon 

platform is a simulated rotary-wing aircraft (RWA, 
described in the following section).  The JTAC agent 
includes 174 productions in its long-term memory.  For 
the experimentation scenario, we equipped the RWA 
assets with an unrealistic number of missiles so that the 
JTAC can continue running repeated CAS missions 
against targets for a full hour.  We ran the scenario for an 
hour of real time, collecting performance statistics every 
10 seconds. 
 
4.4 RWA Agent 
 
For the purposes of this experiment, the RWA agent 
serves as three different agents.  That is, we used a single 
RWA agent model, consisting of 2045 productions in 
long-term memory.  However, we measured the agent’s 
performance in three different mission areas and 
scenarios.  This allows us to characterize agent 
performance that is more a function of its tasking than its 
knowledge base.   
 
In the RWA-CAS scenario, the RWA agent provides the 
weapons support for the JTAC agent described above.  
For our experiment, we placed an unrealistically large 
number of CAS targets and gave the RWA vehicle an 
unrealistically large number of simulated hellfire missiles.  
This allowed us to run the scenario with fairly continuous 
reasoning and activity for an hour of real time, collecting 
performance statistics every 10 seconds. 
 
In the RWA-DAS scenario, the same RWA agent 
performs a Direct Air Strike mission against a number of 
targets.  This mission involves the coordination of four 
different aircraft (each controlled by an instance of the 
RWA agent code) to plan attack routes, follow attack 
routes, then coordinate attacks against the targets.  We 
again ran the scenario for an hour of real time, collecting 
performance statistics every 10 seconds.  In this scenario, 
there is one Lead aircraft and three support aircraft.  The 
performance profiles of the support aircraft are similar but 
somewhat less demanding than for the Lead aircraft 
(because the Lead does most of the decision making).  
Thus, in this paper we are only reporting the statistics 
collected for the Lead RWA agent. 
 
In the RWA-SAR scenario, the same RWA agent 
performs a search-and-rescue mission, which mostly 
consists of a systematic search of an area and reporting of 
observations.  An important feature that distinguishes this 
scenario from the other RWA scenarios is that the agent is 
configured to report a large amount of its internal 
reasoning to an external system (called VISTA) that 
provides graphical visualization of the agent’s “mental 
state” (Taylor et al., 2002).  This imposes additional 
performance, memory, and interaction requirements on 
the agent.  Once again, we ran the RWA-SAR scenario 
for an hour of real time, collecting performance statistics 
every 10 seconds.  For each of the RWA scenarios, we 



ran experiments using the original RWA code base, as 
well as experiments after a set of fairly routine 
optimizations to the code (see the section below on 
Opportunities for Improvement).  For the initial 
performance results we show only the optimized RWA 
performance.  Performance of the RWA agent before 
optimization had the same characteristic shape with 
slightly worse performance. 
 
5. Experimental Results 
 
The following sections present the primary results and 
analysis of the collection of experiments described above.  
The goals of our analysis are to determine how the 
memory and computational performance of the agents 
scales over time, as well as assess the “practical” 
scalability of applied agent systems.  We will describe 
what we mean by “practical” in the relevant subsection.1 
 
5.1 Scalability of Memory Requirements 
 
One of the results demonstrated by prior efforts to 
evaluate Soar is that memory demands do not continue to 
increase in an unbounded fashion with prolonged 
execution times (Laird, 2009; Laird, Derbinsky, & Voigt, 
2011).  This is not necessarily an obvious result.  
Certainly it is possible to build Soar agents that 
increasingly consume memory (by continually increasing 
the size of Working Memory) over time.  And it is in fact 
the case that such agents will eventually slow to a crawl 
or exhibit other undesired characeteristics.  But it is also 
the case that intelligent reasoning systems must base their 
decisions on some representation of situational 
understanding.  Situational understanding does not just 
mean understanding what is going on in the current 
snapshot of time.  It also means maintaining a memory of 
past events that have relevance on the interpretation and 
understanding of future events.  Because of this need to 
base understanding in part on persistent memories, it is 
reasonable to assume that an applied intelligent agent 
might exhibit undesired memory growth.  Our first 
analysis aims at discovering whether these applied agents 
(which again were optimized for capability, not 
necessarily for memory use) show any continual growth 
in memory use over time. 
 

                                                           
1 The experiments used Soar 8.6.3 on an HP EliteBook 
with a 2.56 GHz Intel Core 2 Processor, and 3 GB of 
RAM, with Microsoft Windows XP Service Pack 3.  Soar 
8.6.3 was the version integrated into the SimJr 
environment.  Soar 9 integrates several new learning and 
memory mechanisms (Laird, 2008), but none of the 
applied agents in this study use those mechanisms.  A 
series of baseline comparisons verified that performance 
differences for these agents are not significant between 
Soar 8 and Soar 9. 

Figure 3 displays the size of Soar’s Working Memory for 
each agent during each 10-second snapshot.  As expected, 
the Wait Task agent makes negligible demands on 
memory.  The Comm agent also makes modest demands 
on Working Memory, because it engages mostly in 
communication, and not significantly on the types of 
decision making that require sophisticated situation 
understanding.  The other agents make higher demands on 
memory, but the important point to note is that, for these 
applied agents, we see a consistent pattern of reaching an 
asymptote in Working Memory size that persists for the 
duration of execution.  Thus, for relatively sophisticated 
and capable agents, our results replicate prior studies; we 
do not see an undesired pattern of memory growth.  It is 
also interesting to note that the asymptote is different for 
each of the RWA agent missions, reiterating that 
representations of short-term knowledge are sensitive not 
only to the structure and capabilities of the agent, but also 
to the types of missions and situations assigned to the 
agent.  The lesson here is that building capable applied 
agents does not require unmanageable growth in the 
internal representations those agents build and use. 
 

 
 
Figure 3.  Change in Working Memory requirements over 
time. 

5.2 Scalability of Execution Time  
 
In addition to memory use, perhaps the most important 
factor contributing to scaleability of intelligent agents is 
response time.  It is certainly reasonable to expect 
intelligent systems to have fairly expensive computational 
requirements, because they generally have to do 
sophisticated understanding and decision making.  In 
highly dynamic environments (such as most of the 
environments in our experiments) these potentially 
expensive computations must occur frequently.  An 
important question is whether the execution performance 
of an agent will degrade as we increase the capabilities of 
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the agent or during the “execution lifetime” of the agent.  
Doorenbos (1995) and Laird (2009) have demonstrated 
that even agents that have millions of productions in long-
term memory, as well as agents that run for extremely 
long times, do not degrade in reaction time.  However, it 
could be argued that these prior results were obtained 
from research agents.  Thus, part of our intention with this 
investigation was to see if we see similar execution-time 
patterns in applied agent systems.   
 
 

 
Figure 4.  Kernel execution time results for the Comm agent. 

 

 
Figure 5. Kernel execution time results for the JTAC agent. 

 
Figure 6.  Kernel execution time results for the RWA-CAS 
agent. 

 
Figure 7.  Kernel execution time results for the RWA-DAS 
agent. 

 
 

 
Figure 8.  Kernel execution time results for the RWA-SAR 
agent. 
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Figure 4 through Figure 8 show the execution-time 
patterns over time for each agent in terms of time taken 
per decision.  Recall that the “standard” response time we 
hope for from Soar-based systems is 50 milliseconds per 
decision.  The first significant observation of these graphs 
is that run times are far faster than this typical target, 
being closer to the range of 100-200 microseconds per 
decision cycle.  While average behavior is certainly of 
interest, it is also of interest to see where there are peaks 
in execution-time requirements.  This is because such 
peaks represent the “least reactive” episodes that the 
agents engage in.  While it may be fine, for example, for 
an agent to demonstrate average response times of 50 
milliseconds, it could be the case that occasional episodes 
requiring 5-second response times (to be extreme) would 
make the agent basically worthless.  Thus, we have 
plotted the data in scatter plots that summarize the data 
for each 10-second interval.  From the figures, we can see 
that there is some variation in execution time within each 
agent, but the variation is within fairly narrow bands, with 
no egregious outliers.  We can also see that different 
agents have different execution-time profiles, but in all 
cases the response times are extremely fast.   
 
One of the major results here is that the agents (with one 
exception) do not slow down over time, showing that in 
general the applied agents show similar performance 
characteristics to the research agents that have been 
evaluated in the past.  One exception is the RWA-SAR 
agent, which does appear to show a slight slowing trend 
over time.  We have performed additional investigations 
and verified that there are not an increased number of 
production firings or working-memory changes over time, 
so the slowing must be coming from somewhere else.  It 
is possible (perhaps even likely) that the slowing is 
coming from outside of the Soar process, but we will need 
to engineer Soar to collect new statistics in order to verify 
that.  The current kernel time statistic does not measure 
“actual time in the kernel thread”, so it can incur a penalty 
from external operating-system activities.  In future 
experiments we will track down the precise nature of this 
slowing, as well as an explanation for why the RWA 
agent shows some slowing in the SAR scenario but not in 
the other RWA scenarios. 
 
6. Practical Agent Performance 
 
The previous experiments measured time spent in the 
Soar kernel.  This was in part to omit any artificial 
degradation of performance, for example due to operating 
systems delays, etc.  But in practical terms, what we care 
about for a deployed agent is its ability to react 
sufficiently quickly in real, wall-clock time.  Thus, in 
addition to the kernel-time data, we collected statistics on 
the real wall-clock time per agent decision cycle in each 
experiment run.  The average data per 10-second time 
slice appears in Figure 9, and the cumulative average 
appears in Figure 10.  We include the cumulate average 

here because the graph is smoother and makes the overall 
trends and distinctions more clear.  For the cumulative 
average, we have omitted the data collected during the 
first 10-second time slice, because the simulation 
environment has a comparatively expensive initialization 
time, relative to the agent cycle times.  The results show 
that the two simplest agents (Wait task and Comm) have 
extremely low cycle times.  The more complex agents 
appear to “settle” between 1.2 and 1.8 milliseconds per 
decision.   

  
Figure 9.  Real (wall-clock) execution time per agent 
decision. 

  
Figure 10.  Cumulative average of real (wall-clock) execution 
time per agent decision. 

Taken together, these results are extremely encouraging.  
Over an hour of run time, even the applied agent with the 
largest knowledge base (RWA) continues to run 
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efficiently.  It is clear that different minimal levels of 
reaction time are suitable for different agent applications.  
For example, the Comm agent simulates communications 
processes that happen in the real world over the course of 
seconds, minute, and hours.  Only the most dynamic tasks 
require reaction times at the millisecond level.   
 
For a dynamic first-person shooter game, Laird and Duchi 
(2000) determined that humans subjectively judge 100 
millisecond decision-cycle times in Soar agents to be the 
most “human looking” level of reactivity.  If we use 50-
100 milliseconds as a target range, then the results suggest 
that we could run in the neighborhood of fifty knowledge 
rich agents (or even more knowledge-lean agents) on a 
typical 2010 computation platform, with sufficient 
reactivity for human-level interaction.  In applications in 
which an even coarser grain size of reactivity is 
appropriate, even more agents could run simultaneously 
on a single machine. 
 

 
Figure 11.  Execution-time improvements arising from 
iterative optimization of RWA code. 

7. Opportunities for Improvement 
 
As mentioned previously, all of the agents used in our 
experiments were taken “as is” from the SoarTech code 
respositories.  Each agent was developed to achieve 
particular agent-capability goals and performance 
requirements, with run-time and memory efficiency 
addressed only to the extent necessary to meet the project 
requirements.  However, in those cases where we do need 
to optimize performance, we have some particular “rules 
of thumb” to optimization approaches: 
 

• Identify Soar productions in long-term memory 
that have very high firing rates, and find a way to 
reduce the firing rate.  Strategies might include 

changing knowledge representations a bit, using 
“smarter” production representations, removing 
redundant conditions from productions, or 
moving rote computations to external functions.  
For example, it does not make much sense to 
have a Soar production continuously compute 
the range between two points.  This is better 
done in a chunk of procedural code. 

• Identify Soar productions that use high amounts 
of memory.  This can arise from productions that 
have large numbers or combinations of partial 
matches in their conditions.  In such cases, it can 
also be effective to adjust knowledge 
representations or possibly to split patterns into 
multiple productions in order to generate a more 
efficient implementation. 

 
In the results presented above, we applied these basic 
rules of thumb in an attempt to find opportunities to 
improve the efficiency of the RWA-CAS agent.  We 
made three rounds of optimizations, each involving 
finding a set of related “expensive” productions and then 
making the appropriate representation adjustments to 
reduce the expense without altering the behavior of the 
system.  The results of these iterations are presented in 
Figure 11.  Note that the Y axis has been “zoomed in” to 
make the differences between the four agents more 
apparent. 
 
Each iteration of improvements led to a visible 
improvement in the real-time computational run-time of 
the RWA-CAS agent.  There is a pattern of diminishing 
returns; each optimization resulted in less improvement 
than the previous optimization.  However, with only a few 
relatively inexpensive optimizations, we were able to 
improve the performance of the RWA-CAS agent by 
about 14%.  It also appears that additional rounds of 
optimization using this methodology (as opposed to a 
complete agent redesign) will not significantly improve 
the agent’s performance.   
 
In our analysis above, of “practical agent performance”, 
we determined that the range of wall-clock decision-cycle 
time for knowledge-rich agents was in the neighborhood 
of 1.9 milliseconds.  However, with only a few simple 
optimizations of the code, we were able to reduce that 
reaction time to just over 1.5 milliseconds.  We can thus 
revise our estimate of the effective number of knowledge-
rich, applied agents on a typical modern hardware 
platform to the neighborhood of five or six dozen agents. 
 
We ran an additional multi-agent variation of the CAS 
experiment with 6 pairs of JTAC and RWA-CAS agents 
working together simultaneously.  The results are shown 
in Figure 12.  These results compare the performance of 
RWA-CAS in a 2-agent scenario (one JTAC and one 
RWA-CAS) to the performance of one of the RWA-CAS 
agents in a 12-agent scenario (six pairs of agents).  These 
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results suggest that we cannot simply linearly extrapolate 
the performance statistics of a small number of agents to a 
larger number of agents.  The real time per agent decision 
(averaged across all twelve agents) remains constant over 
time, but is higher than in the 2-agent case.  This is 
another result that we plan to investigate further, with the 
hypothesis that the multi-agent overhead is external to the 
Soar process itself, perhaps in the operating system or the 
simulation environment. 
 

 
Figure 12.  Comparison of real-time performance in a 2-
agent scenario and a 12-agent scenario. 

8. Conclusions 
 
The experiments and analysis presented above provide 
evidence to support the following conclusions: 

• Soar performance results demonstrated by 
research agents in other studies also carry over to 
applied agent systems of varying complexity that 
were not developed primarly as performance-
evaluation systems.  In general, applied Soar 
agents run much faster than required for human-
like reaction times. 

• The design of typical applied Soar agents does 
not imply performance degradation over the 
course of long-running tasks. 

• There were opportunities to improve the 
performance of applied agents that were not 
designed with optimized performance as their 
primary goal but successive rounds of 
optimization soon stopped significantly 
impacting performance. 

• The number of applied intelligent agents of fairly 
high complexity that can be expected to run 
within acceptable performance constraints on 
typical, modern computer hardware is 
somewhere in the dozens.  However, there 
appears to be an as-yet-unknown overhead as the 
number of agents is multiplied. 

 

These results should be encouraging to anybody 
considering the deployment of complex applied Soar 
agents.  As was also demonstrated in previous studies on 
research agents, the performance of applied agents appear 
to depend more on the structure of those agents than on 
the complexity or run-time duration.  Although Soar’s 
underlying theory dictates cycle times of 50 milliseconds 
as a target, applied agents on typical modern hardware run 
at least an order of magnitude faster than that.  Our 
experiments showed that there are some situations where 
we do not yet have full explanations for performance 
characteristics.  This includes gradual slowing over time 
of the RWA agent when performing the SAR scenario, as 
well as an increased, potentially external, overhead when 
significantly multiplying the number of agents running 
simultaneously in a scenario.  We plan to engineer new 
data-collection metrics into the Soar architecture to 
investigate these performance phenomena further. 
 
9. References 
 
Doorenbos, R. B. (1995). Production Matching for Large 

Learning Systems, Doctoral Dissertation, Computer 
Science Department, Carnegie Mellon Univ. 

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., 
Kenny, P., & Koss, F. V. (1999). Automated 
Intelligent Agents for Combat Flight Simulation. AI 
Magazine, 20(1), 27-42.  

Laird, J. E. (2009).  Millions of rules, billions of 
decisions.  Presentation at the 29th Soar Workshop. 

Laird, J. E. (2008).  Extending the Soar architecture.  
Proceedings of the 2008 Conference on Artificial 
General Intelligence. 

Laird, J. E., & Duchi, J. C. (2000).  Creating human-like 
synthetic characters with multiple skill levels: A 
case study using the Soar QuakeBot.  Proceedings 
of the AAAI Fall Symposium on Simulating Human 
Agents.  

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987), 
Soar: An architecture for general intelligence. 
Artificial Intelligence, 33(3), 1-64. 

Laird, J. E., Derbinsky, N., & Voigt, J. (2011).  
Peformance evaluation of declarative memory 
systems in Soar.  Proceedings of the 20th Behavior 
Representation in Modeling and Simulation 
Conference. 

Newell, A. (1990). Unified theories of cognition. Harvard 
University Press.  

Taylor, G., Jones, R. M., Goldstein, M., Frederiksen, R., 
& Wray, R. E. (2002).  VISTA: A generic toolkit for 
visualizing agent behavior.  Proceedings of the 
Eleventh Conference on Computer Generated 
Forces and Behavior Representation.  Orlando, FL. 

Taylor, G., & Ray, D. (2008).  Low fidelity tactical 
simulation environment: SimJr.  Presentation at the 
28th Soar Workshop. 

 

0

1

2

3

4

0 1000 2000 3000 4000

Wall clock msec per decision (y) vs. elapsed 

time in seconds (x)

RWA-CAS Opt RWA-CAS Multi


